5. (a) During a thermodynamic cycle gas undergoes three different processes beginning at an initial state where p₁-1.5 b

Business, Finance, Economics, Accounting, Operations Management, Computer Science, Electrical Engineering, Mechanical Engineering, Civil Engineering, Chemical Engineering, Algebra, Precalculus, Statistics and Probabilty, Advanced Math, Physics, Chemistry, Biology, Nursing, Psychology, Certifications, Tests, Prep, and more.
Post Reply
answerhappygod
Site Admin
Posts: 899603
Joined: Mon Aug 02, 2021 8:13 am

5. (a) During a thermodynamic cycle gas undergoes three different processes beginning at an initial state where p₁-1.5 b

Post by answerhappygod »

5 A During A Thermodynamic Cycle Gas Undergoes Three Different Processes Beginning At An Initial State Where P 1 5 B 1
5 A During A Thermodynamic Cycle Gas Undergoes Three Different Processes Beginning At An Initial State Where P 1 5 B 1 (423.68 KiB) Viewed 30 times
5. (a) During a thermodynamic cycle gas undergoes three different processes beginning at an initial state where p₁-1.5 bar, V₁ =2.5 m³ and U₁ =61 kJ. The processes are as follows: (i) Process 1-2: Compression with pV= constant to p2 = 3 bar, U₂ = 710 kJ 3 (ii) Process 2-3: W2-3 = 0, Q2-3= -200 kJ, and (iii) Process 3-1: W3-1 = +100 kJ. Determine the heat interactions for processes 1-2 and 3-1 i.e. Q1-2 and Q3-1. (b) A and B are two reversible Carnot engines which are connected in series working between source temperature of 1500 K and sink temperature of 200 K, respectively. Carnot engine A gets 2000 kJ of heat from the source (maintained at temperature of 1500 K) and rejects heat to second Carnot engine i.e. B. Carnot engine B takes the heat rejected by Carnot engine A and rejects heat to the sink maintained at temperature 200 K. Assuming Carnot engines A and B have same thermal efficiencies, determine: a. Amount of heat rejected by Carnot engine B b. Amount of work done by each Carnot engines i.e. A and B c. Assuming Carnot engines A and B producing same amount of work, calculate the amount of heat received by Carnot B and d. Thermal efficiency of Carnot engines A and B, respectively.
Join a community of subject matter experts. Register for FREE to view solutions, replies, and use search function. Request answer by replying!
Post Reply