- Let E Be The Solid Enclosed By The Ellipsoid Xy Plane J U V W 1 Calculate The Jacobian Using The Change Of Va 1 (54.55 KiB) Viewed 40 times
Let E be the solid enclosed by the ellipsoid ² + xy-plane. J(u, v, w) = 1. Calculate the Jacobian using the change of va
-
- Site Admin
- Posts: 899603
- Joined: Mon Aug 02, 2021 8:13 am
Let E be the solid enclosed by the ellipsoid ² + xy-plane. J(u, v, w) = 1. Calculate the Jacobian using the change of va
Let E be the solid enclosed by the ellipsoid ² + xy-plane. J(u, v, w) = 1. Calculate the Jacobian using the change of variables=u, y = 2v, and z = 3w. z dV= = f(u,v,w) = 8(x, y, z) d(u, v, w) 4 2. Rewrite the integral using the change of variables: and/or w) SIS E B by the unit sphere above the uv-plane. Find f(u,v,w). +4+ - 12 [[ zdv-fff z dV= B B 5pi/2 for f(u, v, w) du du du, where B is the solid enclosed = 1 above the 3. Evaluate the integral (you may use spherical coordinates to evaluate the integral). (express your answer in terms of U, V, fff f(u, v, w) du dv dw = [ T (enter a number; enter pi for ; for example, enter pi/2 for 2 and enter 5m ; do not insert a space or a multiplication operator) 2