According to a recent study, 12% of peanut M&M's are brown, 18% are yellow, 18% are red, 27% are blue, 9% are orange, an
-
- Site Admin
- Posts: 899603
- Joined: Mon Aug 02, 2021 8:13 am
According to a recent study, 12% of peanut M&M's are brown, 18% are yellow, 18% are red, 27% are blue, 9% are orange, an
solutions to four decimal places, if necessary. Compute the probability that exactly two of the four M&M's are orange. P(z = 2) = Compute the probability that two or three of the four M&M's are orange. P(x = 2 or z = 3) = Compute the probability that at most two of the four M&M's are orange. P(x ≤ 2): = Compute the probability that at least two of the four M&M's are orange. P(x ≥ 2) If you repeatedly select random samples of four peanut M&M's, on average how many do you expect to be orange? HI orange M&M's With what standard deviation? σ= orange M&M's k
According to a recent study, 12% of peanut M&M's are brown, 18% are yellow, 18% are red, 27% are blue, 9% are orange, and 15% are green. Assume these proportions are correct and suppose you randomly select four peanut M&M's from an extra-large bag of the candies. Calculate the following probablities. Also calculate the mean and standard deviation of the distribution. Round all