- 1 (16.87 KiB) Viewed 40 times
If r(t) satisfies the initial value problem x"+2px' + (p² + 1)x = d(t − 2π), - then show that x(0)=0, x'(0) = vo. x(t) =
-
- Site Admin
- Posts: 899603
- Joined: Mon Aug 02, 2021 8:13 am
If r(t) satisfies the initial value problem x"+2px' + (p² + 1)x = d(t − 2π), - then show that x(0)=0, x'(0) = vo. x(t) =
If r(t) satisfies the initial value problem x"+2px' + (p² + 1)x = d(t − 2π), - then show that x(0)=0, x'(0) = vo. x(t) = (vo+ e²u(t - 2n))e-pt sint. Here & denotes the Dirac delta function and u denotes the Heaviside step function as in the textbook.