4. (30) Let S be the drinking cup which is 4 units tall, whose sides are the cylinder x² + y² = 9, with bottom at z = 0,

Business, Finance, Economics, Accounting, Operations Management, Computer Science, Electrical Engineering, Mechanical Engineering, Civil Engineering, Chemical Engineering, Algebra, Precalculus, Statistics and Probabilty, Advanced Math, Physics, Chemistry, Biology, Nursing, Psychology, Certifications, Tests, Prep, and more.
Post Reply
answerhappygod
Site Admin
Posts: 899603
Joined: Mon Aug 02, 2021 8:13 am

4. (30) Let S be the drinking cup which is 4 units tall, whose sides are the cylinder x² + y² = 9, with bottom at z = 0,

Post by answerhappygod »

4 30 Let S Be The Drinking Cup Which Is 4 Units Tall Whose Sides Are The Cylinder X Y 9 With Bottom At Z 0 1
4 30 Let S Be The Drinking Cup Which Is 4 Units Tall Whose Sides Are The Cylinder X Y 9 With Bottom At Z 0 1 (95.81 KiB) Viewed 63 times
4. (30) Let S be the drinking cup which is 4 units tall, whose sides are the cylinder x² + y² = 9, with bottom at z = 0, and which has no top (or how would you drink?). (See picture, previous page.) Let F(x, y, z) = < −y, x,x+z>. Compute the flux of curl(F) through S. Parameterize the two pieces of S (side and bottom, see previous page for picture), compute the 2 fluxes, add, and compare to problem 3 Be sure that your normal vectors point "out". Note that your r vectors should have 2 parameters, but not the same 2 parameters. Finally, one of these integrals evaluates to 0. Just saying. curl(F) = "Sides" (cylinder shell) "Bottom" (disk)
Join a community of subject matter experts. Register for FREE to view solutions, replies, and use search function. Request answer by replying!
Post Reply