Entered 0.0108824 The answer above is NOT correct. (1 point) Answer Preview 3 Find the curvaturex of the plane curve y =
-
- Site Admin
- Posts: 899603
- Joined: Mon Aug 02, 2021 8:13 am
Entered 0.0108824 The answer above is NOT correct. (1 point) Answer Preview 3 Find the curvaturex of the plane curve y =
Results for this submission Entered 21+8tj-6(t^2) k 8-12't'k [sqrt(36 (t^4)-144 (t^3)+153 (t^2)+4)/(1+16 (t^2)+9"(t^4)]^(3/2)) At least one of the answers above is NOT correct. (1 point) Given the curve R(f) = 21/+4²/-214 (1) Find R'(t)=21+8tj-61^2k (2) Find R" (t)=8-12tk (3) Find the curvature x = (sqrt(36t^4-1441^3+1531^2+4)/(1+161^2+91^4)^(3/2)) Answer Preview 2/+8t/-61²k 8/-121 36r-1441 +1531² +4 (1 + 16² +94) Result correct correct incorrect
Entered [e^(3't)][3'cos(t)-sin(t)]+[e^(3't)][cos(t)+3*sin(t)]*j+3* [e^(3¹1)]"k sqrt(19) [e^(3*t)) (3cos(t)-sin(t)/sqrt(19))+(cos(t)+3sin(t)/sqrt(19))+ (3/sqrt(19)) [-3'sin(t)-(cos(t))/(sqrt(10))+(-[sin(t)]+ (3*cos(t)]/[sqrt(10)])) At least one of the answers above is NOT correct. (1 point) Given Find the derivative R' (t) and norm of the derivative. Answer Preview e (3 cos (1)-sin(t))/+e" (cos(t) + 3 sin(t))/+3e³ & correct (-3 sin(1) co 3 cos(t) cos(0))+ (-(sin(t) + ³006)/ /+ (0), √19e" R(t)=e" cos(t)/+e" sin(t)/+e" k R'() e^(31)(3cos(t)-sin(t))+e^(31)(cos(t)+3sin(t))+3e^(3)k ||R'()||= sqrt(19)e^(31) Then find the unit tangent vector T(r) and the principal unit normal vector N(1) Result T(t) = (3cos(t)-sin(t)/sqrt(19))+(cos(t)+3sin(t)/sqrt(19))+(3/sqrt(1 N(1) <(-3sin(t)-cos(t)/sqrt(10)).(-sin(t)+3cos(t)/sqrt(10)),0> correct incorrect incorrect Message Operands for '+' must be of the same type