At what points does the helix r(t) = (sin(t), cos(t), t) intersect the sphere x² + y² + z² = 50? (Round your answers to

Business, Finance, Economics, Accounting, Operations Management, Computer Science, Electrical Engineering, Mechanical Engineering, Civil Engineering, Chemical Engineering, Algebra, Precalculus, Statistics and Probabilty, Advanced Math, Physics, Chemistry, Biology, Nursing, Psychology, Certifications, Tests, Prep, and more.
Post Reply
answerhappygod
Site Admin
Posts: 899603
Joined: Mon Aug 02, 2021 8:13 am

At what points does the helix r(t) = (sin(t), cos(t), t) intersect the sphere x² + y² + z² = 50? (Round your answers to

Post by answerhappygod »

At What Points Does The Helix R T Sin T Cos T T Intersect The Sphere X Y Z 50 Round Your Answers To 1
At What Points Does The Helix R T Sin T Cos T T Intersect The Sphere X Y Z 50 Round Your Answers To 1 (46.25 KiB) Viewed 9 times
At what points does the helix r(t) = (sin(t), cos(t), t) intersect the sphere x² + y² + z² = 50? (Round your answers to three decimal places. If an answer does not exist, enter DNE.) cos(7), sin (7),7) cos(7), sin (7), -7 smaller t-value larger t-value (x, y, z) = (x, y, z) =
Join a community of subject matter experts. Register for FREE to view solutions, replies, and use search function. Request answer by replying!
Post Reply