MODEL 1 Dependent Variable: D_DMI Method: ML ARCH- Normal distribution (BFGS/ Marquardt steps) Date: 08/07/20 Time: 11:1

Business, Finance, Economics, Accounting, Operations Management, Computer Science, Electrical Engineering, Mechanical Engineering, Civil Engineering, Chemical Engineering, Algebra, Precalculus, Statistics and Probabilty, Advanced Math, Physics, Chemistry, Biology, Nursing, Psychology, Certifications, Tests, Prep, and more.
Post Reply
answerhappygod
Site Admin
Posts: 899603
Joined: Mon Aug 02, 2021 8:13 am

MODEL 1 Dependent Variable: D_DMI Method: ML ARCH- Normal distribution (BFGS/ Marquardt steps) Date: 08/07/20 Time: 11:1

Post by answerhappygod »

Model 1 Dependent Variable D Dmi Method Ml Arch Normal Distribution Bfgs Marquardt Steps Date 08 07 20 Time 11 1 1
Model 1 Dependent Variable D Dmi Method Ml Arch Normal Distribution Bfgs Marquardt Steps Date 08 07 20 Time 11 1 1 (130.2 KiB) Viewed 12 times
MODEL 1 Dependent Variable: D_DMI Method: ML ARCH- Normal distribution (BFGS/ Marquardt steps) Date: 08/07/20 Time: 11:13 Sample (adjusted): 31500 Included observations: 1498 after adjustments Convergence achieved after 12 iterations. Coefficient covariance computed using outer product of gradients Presample variance: backcast (parameter = 0.7) GARCH=C(3) + C(4)*RESID(-1)^2 Variable C AR(1) C RESID(-1)^2 R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat Inverted AR Roots MODEL 3 Coefficient Std. Error z-Statistic -0.000393 0.000184 -2.139335 0.0324 -0.067079 0.028668 -2.339882 0.0193 Variance Equation 4.68E-05 1.77E-06 26.41991 0.0000 0.194876 0.021639 9.005742 0.0000 0.002655 Mean dependent var 0.001988 S.D. dependent var 0.007599 Akaike info criterion 0.086376 Schwarz criterion 5211.347 Hannan-Quinn criter. 1.969580 Dependent Variable: D_DM Method: ML ARCH- Normal distribution (BFGS/ Marquardt steps) Date: 08/07/20 Time: 11:15 -.07 Sample (adjusted): 31500 Included observations: 1490 after adjustments Convergence achieved after 33 iterations Coefficient covariance computed using outer product of gradients C RESID(-1)^2 RESID(-1)ID(-1)-0) GARCH(-1) R-squared Adjusted R-squared SF of regression Sum squared resid Log likelihood Durbin-Watson stat Inverted AR Roots Presample variance: backcast (parameter = 0.7) GARCH = C(3) + C(4) RESID(-1)^2 + C(5) RESID(-1)^2*(RESID(-1)=0) + C(0) OARCH(-1) Variable с AR(1) Coefficient Std. Error 2-Statistic Prob. -0.000520 0.000160 -3.247433 0.0012 -0.079006 0.028584 -2.785013 0.0054 Prob. -0.000258 0.007606 -6.952399 -6.938215 -6.947115 0.001191 Mean dependent var 0.000523 S.D. dependent var 0 007604 Akaike info criterion 0.086503 Schwarz criterion 5299.392 Hannan-Quinn criter. 1.941218 Variance Equation 7.60E-07 2.70E-07 2.809456 0.0050 0.065232 0.011844 5.507768 0.0000 0.059687 0.016741 3.565283 0.0004 0.899439 0.013137 68.46483 0.0000 -.08 -0.000258 0.007606 -7.067279 -7.046003 -7.059352 MODEL 2 8 Dependent Variable: D_DM Method: ML ARCH- Normal distribution (BFGS/Marquardt steps) Date: 08/07/20 Time: 11:14. Sample (adjusted): 31500 Included observations: 1498 after adjustments Convergence achieved after 27 iterations Coefficient covariance computed using outer product of gradients Presample variance: backcast (parameter = 0.7) GARCH=C(3) + C(4)*RESID(-1)^2 + C(5)*GARCH(-1) Variable с AR(1) с RESID(-1)^2 GARCH(-1) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat Inverted AR Roots Std. Error z-Statistic Coefficient -0.000412 0.000148 -2.780930 0.0054 -0.077550 0.029167 -2.658784 0.0078 Variance Equation 1.19E-06 3.42E-07 3.476185 0.107640 0.012296 8.753966 0.877283 0.014597 60.10056 0.002196 Mean dependent var 0.001529 S.D. dependent var 0.007600 Akaike info criterion 0.086416 Schwarz criterion 5294.881 Hannan-Quinn criter. 1.947314 -.08 Prob. 0.0005 0.0000 0.0000 -0.000258 0.007606 -7.062591 -7.044861 -7.055986 III. Based on the Three models of the ARCH/GARCH type in part (II) above, explain whether good and bad news have symmetric effects on D_DM. (2 Marks)
Join a community of subject matter experts. Register for FREE to view solutions, replies, and use search function. Request answer by replying!
Post Reply