Do a FFT (Fast Fourier Transform) analysis of each wave below
clc close all clear all * given data f = le3; WO = 2*pi*f; fs = 44100; t = 0:1/fs:3/f; A = 1; n = (1:2:3).'; * Fourier series expanstion * = A/2 + (2*A/(pi))*sum((sin(n*wo. *t))./n); N = n(end); plot(t, x,'b', 'linewidth', 2) xlabel('[sec)') ylabel ('Amplitude) title(+ N + " Harmonic components") grid on MATLAB CODE:
Figure File Edit View Insert Tools Desktop Window Help a 1 Harmonic component, ADOQQ 1.5 0.5 Amplitude 0 -05 0.5 2 25 3 X105 1.5 Result: a) t[sec] Figure File Edit View Insert Tools Desktop Window Help 3 Harmonic components 1 0.8 0.6 Amplitude 0.4 0.2 0 -02 0 0.5 1 1.5 2 25 3
0 Figure 1 File Edit View Insert Tools Desktop Window Help . 5 Harmonic components 1.2 1 W/ M m 0.8 06 Amplitude 0.4 0.2 0 w mo -02 0 0.5 1 2 2.5 3 1.5 t[sec] 103 (Figure ! File Edit View Insert Tools Desktop Window Help 7 Harmonic components 1.2 1 0.8 0.6 Amplitude 111 04 0.2 0 my my my -02 0 05 1 1.5 2 25 t[sec] 109
Figure File Edit View Insert Tools Desktop Window Help 9 Harmonic components 1.2 1 un am an 0.8 0.6 Amplitude w 0.4 0.2 0 mu mw 2 25 3 X 100 -02 0 0.5 1.5 t[sec] Figure File Edit View Insert Tools Desktop Window Help Daas BOB 11 Harmonic components 1.2 1 Mud und hund 0.8 0.6 Amplitude 0.4 0.2 0 how mud -02 0 0.5 1 2 25 3 1.5 t[sec] x 103
Do a FFT (Fast Fourier Transform) analysis of each wave below
-
- Site Admin
- Posts: 899603
- Joined: Mon Aug 02, 2021 8:13 am