- Find The Velocity And Acceleration Vectors At Time T R T 3sint I T 1 J 4e K Ov T 3cos 2 I 5j 4k A T 1 (82.79 KiB) Viewed 21 times
= Find the velocity and acceleration vectors at time t r(t) = 3sint i = (t² + 1)j + 4e¹k Ov(t)=3cos(2)i + 5j+4k a(t) = -
-
- Site Admin
- Posts: 899603
- Joined: Mon Aug 02, 2021 8:13 am
= Find the velocity and acceleration vectors at time t r(t) = 3sint i = (t² + 1)j + 4e¹k Ov(t)=3cos(2)i + 5j+4k a(t) = -
= Find the velocity and acceleration vectors at time t r(t) = 3sint i = (t² + 1)j + 4e¹k Ov(t)=3cos(2)i + 5j+4k a(t) = -3cos(2)i - 2j A. OB. v(t) = 4e²k a(t) = -3i v(t) = 3cos(2)i - 4j+4e²k C. a(t) = -3sin(2)/-2j+4e²k D. v(t) = 0 a(t) = 1 2 for the position vector function