- N Joan P Cos Sin E Ds Picos 8 T Sin 0 Ds Le Le A Com Le A P Sin T Cos 6 Ds P Sin 1 (52.9 KiB) Viewed 41 times
N' =- Joan (p.cos @ + sin e) ds. + (picos 8 - T, sin 0) ds LE LE (A.COM LE A' = (-p, sin @ + T, cos 6) ds. + (p, sin @ +
-
- Site Admin
- Posts: 899603
- Joined: Mon Aug 02, 2021 8:13 am
N' =- Joan (p.cos @ + sin e) ds. + (picos 8 - T, sin 0) ds LE LE (A.COM LE A' = (-p, sin @ + T, cos 6) ds. + (p, sin @ +
N' =- Joan (p.cos @ + sin e) ds. + (picos 8 - T, sin 0) ds LE LE (A.COM LE A' = (-p, sin @ + T, cos 6) ds. + (p, sin @ + ti cos e) ds LE LE Consider the supersonic flow over the half wedge at 4° angle of attack. The free stream Mach number a head of the wedge is 3.0, and the free stream pressure is P. = 1.01 x 105 N/m². Due to the passage of supersonic flow, oblique shocks and expansion waves formed over the wedge surface resulting in different values of pressure as shown below. The shear stress is the same over the wedge of tw= 431 s-02 N/m². The chord length is 2 m. (7 = 1.4) a) Calculate the lift coefficient for the wedge. b) Calculate the location of the center of pressure (Xq) for the wedge. P=0.98 x 10 pa 1 m Po a 2 m Mo = 3 Po = 1.01 x 10 pa P = 3.03 x 10 pa