2. Calculate the Chen h mac coefficient (Equation 5 of Chen paper) for pure liquid flow at atmospheric pressure, a flow
-
- Site Admin
- Posts: 899603
- Joined: Mon Aug 02, 2021 8:13 am
2. Calculate the Chen h mac coefficient (Equation 5 of Chen paper) for pure liquid flow at atmospheric pressure, a flow
other helping material is posted under
2. Calculate the Chen h mac coefficient (Equation 5 of Chen paper) for pure liquid flow at atmospheric pressure, a flow velocity of 0.333 m/s, and Dh =1.1 cm. Fluid properties are provided in Table 1. (10 Points)
1 Fluid Property Temperature Preure Vapor Density Liquid Density Liquid Isobarie Specific Heat Liquid Thermal Conductivity Liquid Dynamic Visnity Liquid Prandel Number Vapor Enthalpy Liquid Enthalpy Surface Tension SI Values at Values at Units 383K (K) 373.12 383.12 101,325 143,285 ( 0.598 0.826 958.37 950.97 TER 4,216 4,228 0.677 (Pa) 0.000282 0.000255 0 1.75 1.58 2,675,529 2,091,022 419,058 461,306 0,0589 0.0670 0.680
Heat transfer coefficient Correlation Equations 0.25 Prg Pr, 0.36. Shell side: both regions Zukauskas (1987) kg dex,(1,2) C. Remax Dex Prg.t C and m depends on the configuration and Rep (Incropera and DeWitt, 1996) dinle = sfanb + Fa conv 1 sf = 1+0.00000253 Re:17 where Reps = Rel. F1.25 F = 0.736 1 > Tube side: evaporating region 2. Chen (1966) 1.1150.1 (( 2356 +0.213) where X =(1-25°(BE) if > 0.1 Xtt Xtt 0.9 0.5 0.1 = PL μν 10.790.450.49 and = 0.00122 0.579.29 0.24 0.24 sat A70:24 Ap0.75 (Forster and Zuber, 1955) sat Aconv = 0.023Reº. Prd-4 (1.-) (Dittus and Boelter, * Tube side: superheating region Gnielinski (1976) 1930) fze krize 8 Din 1/2 1 + 12.7 f2e 8 din,ze = (124) (Reze – 1000)Prze ( (134)" (Pro2 - 1) Prze 2/3 Equations used to obtain the heat transfer coefficients.