Given the Turing machine π = (π, Ξ£, Ξ, πΏ, π0, π΅, πΉ) with π =
{π0, ..., π4}, Ξ£ = {0, 1}, Ξ = {0, 1, π, π, π΅}, and πΉ = {π4}.
The transition function πΏ is given by:
a) Determine the configuration sequence that π runs through when
π₯ = 001101 is entered.
b) Does π accept the input π₯?
c) Which language πΏπ does π accept?
(d) Use πΏ to construct a transition function πΏβ² such that πβ² = (π,
Ξ£, Ξ, πΏβ², π0, π΅, πΉ) the language πΏπβ² = πΏπ β
{1π β£ π β β0} accepted.
90 91 92 93 94 0 (91, X, R) (91,0, R) (92,0, L) 1 (92, Y, L) X (90, X, R) Y (93, Y, R) (91,Y, R) (92, Y,L) (93, Y, R) B (94, B, R)
Given the Turing machine 𝑀 = (𝑄, Ξ£, Ξ, 𝛿, 𝑞0, 𝐵, 𝐹) with 𝑄 = {&#
-
- Posts: 43759
- Joined: Sat Aug 07, 2021 7:38 am