d(s) = 2/5. ***** -C and U(S) Aman Eman "Woman 7. £} стал B/s. ut Y(S) = 6.9 q -Y(s) = $ Aman d [STH] ..Cmax. + B 1 с чт
-
- Site Admin
- Posts: 899603
- Joined: Mon Aug 02, 2021 8:13 am
d(s) = 2/5. ***** -C and U(S) Aman Eman "Woman 7. £} стал B/s. ut Y(S) = 6.9 q -Y(s) = $ Aman d [STH] ..Cmax. + B 1 с чт
and U(s) = CA²-C². Amaa d S Eman + Cg woman 7. £}. B Cman aman d ft. T . qo Cmax S ST+1 28 +86-0 отам в -P (3²-5) 97 (mar D (A²-C²" quman, α(1-e²|t) Cmax. -tlg aman Fls. * B ut d(s) = 2/5. 2 0.4 --YO) = y(t) = CB-²9/man (1-e q* Cman y(t) = (1-é ^_²²) α + (C₁²-0²) (5²-0") 9). Gman 5) Using MATLAB, produce a unit step response for the output y(t) and verify the result by comparing it with the analytical result derived in 4). Select the time scales so that both the transients and the steady state output are visible. Assuming d(s) = 0, specify the parameter values that needs to be changed for the speed of the response to increase. Explain and justify your reasoning using appropriate mathematical functions and step response plots? Assuming a unity negative feedback loop, derive the following transfer functions a. Gry(S) b. Gdy (S) c. Gre (S) d. Gde (S) Verify that the closed-loop system is stable by graphically computing the poles and zeros. Analytically calculate the steady state error due to the disturbance and the reference signal. What can you infer from the values obtained? C Where (-14) C