- Accurate Understanding Of Spherical Harmonic Function Using Orthogonal Coordinate System R 2 R Vector S Harmonic 1 (60.05 KiB) Viewed 12 times
* Accurate understanding of spherical harmonic function using orthogonal coordinate system (r+₁,2,r-₁) Vector's harmonic
-
- Site Admin
- Posts: 899603
- Joined: Mon Aug 02, 2021 8:13 am
* Accurate understanding of spherical harmonic function using orthogonal coordinate system (r+₁,2,r-₁) Vector's harmonic
* Accurate understanding of spherical harmonic function using orthogonal coordinate system (r+₁,2,r-₁) Vector's harmonic representation : x+iy 2 r + = a Px-ipy ə Ә ə ih ( + i) == P+ipy √√2 = iħ √√20x dy P+ P₂ = -iħ- p_ = 𐐀z 2 p² Y ₁ ±e ( f) = ₁ 2l+1 (2l)! 4T 2² (1) ² r and L+r¹Ym (î ) = ħ √ (l = m)(l ±m+1) r² Yem±1 (Î) l n-1 Lt = ·i √√√2 ( zp + − r +P ₂ ) p+r²=0, p +r // = iħ nr ²/7/1 F 9 1. Find ³Y₂+2 (f), r³Y₁+1 (f) and ³Y30 (f). 3 2. Find Y3 +2 (F), Y3+1(f) and Y30 (F). ±2 ±1 ==