Q.1 (20) A DT signal is given as x1 [n] = u[n + 2] - u[n - 3]. a) (2) Use table 5.2 to find the Fourier transform of x1

Business, Finance, Economics, Accounting, Operations Management, Computer Science, Electrical Engineering, Mechanical Engineering, Civil Engineering, Chemical Engineering, Algebra, Precalculus, Statistics and Probabilty, Advanced Math, Physics, Chemistry, Biology, Nursing, Psychology, Certifications, Tests, Prep, and more.
Post Reply
answerhappygod
Site Admin
Posts: 899603
Joined: Mon Aug 02, 2021 8:13 am

Q.1 (20) A DT signal is given as x1 [n] = u[n + 2] - u[n - 3]. a) (2) Use table 5.2 to find the Fourier transform of x1

Post by answerhappygod »

Q 1 20 A Dt Signal Is Given As X1 N U N 2 U N 3 A 2 Use Table 5 2 To Find The Fourier Transform Of X1 1
Q 1 20 A Dt Signal Is Given As X1 N U N 2 U N 3 A 2 Use Table 5 2 To Find The Fourier Transform Of X1 1 (47.56 KiB) Viewed 140 times
Q 1 20 A Dt Signal Is Given As X1 N U N 2 U N 3 A 2 Use Table 5 2 To Find The Fourier Transform Of X1 2
Q 1 20 A Dt Signal Is Given As X1 N U N 2 U N 3 A 2 Use Table 5 2 To Find The Fourier Transform Of X1 2 (178.61 KiB) Viewed 140 times
Q 1 20 A Dt Signal Is Given As X1 N U N 2 U N 3 A 2 Use Table 5 2 To Find The Fourier Transform Of X1 3
Q 1 20 A Dt Signal Is Given As X1 N U N 2 U N 3 A 2 Use Table 5 2 To Find The Fourier Transform Of X1 3 (230.1 KiB) Viewed 140 times
Q.1 (20) A DT signal is given as x1 [n] = u[n + 2] - u[n - 3]. a) (2) Use table 5.2 to find the Fourier transform of x1 [n]. If one fundamental period of another 8-periodic signal x2[n] is exactly the same as xa[n], b) (2) Write down the expression of x2[n] in terms of X1 [n]. 8 sinn Another DT signal is given as x3[n] = c) (2) Use table 5.2 to find the Fourier transform of x3[n]. d) (2) Sketch the frequency spectrum of x3[n] for <31. Show important values. πη = If x4[n] = x3[n] * Em-[n - 8m), e) (2) Use tables to find the Fourier transform of x4[n]. f) (2) Sketch the frequency spectrum of x4[n] for 0 <31. Show important values. g) (2) Is the FS coefficients of x4[n] similar to the periodic signal xz[n] ? If your answer is yes, give the name of the property describing the similarity. If your answer is no, briefly explain. The frequency response of a DT filter is given below. 37 4e-jw : 8 H(@jw) = 0 Os| ws <| w5T WST and H(e)w) is 2n-periodic. 377 0 8 If x4[n] is applied to the DT filter to give the output y4[n], h) (2) Sketch the magnitude spectrum of y4[n] for « | <2n. Show important values. i) (2) Write down the mathematical expression of Y4 (ejw) for | 0 | <n. j) (2) Write down the mathematical expression of y4[n].

TABLE 4.2 BASIC FOURIER TRANSFORM PAIRS Fourier transform TABLE 4.1 PROPERTIES OF THE FOURIER TRANSFORM Section Property Aperiodic signal x(1) x y(t) Signal Fourier transform Fourier series coefficients (if periodic) X(ja) Y() quellement 2. Z 480w - kwoo) a 298W -W) 4, -1 ax-0, otherwise 4.3.1 4.3.2 4.3.6 4.3.3 4.3.5 ax(jw) + bY (jw) ex(jw) Xw-w)) X'(-a) X(-jw) COS! [8(0-0) + 8( + o)] Q-0, otherwise 4.3.5 Linearity Time Shifting Frequency Shifting Conjugation Time Reversal Time and Frequency Scaling Convolution Multiplication Differentiation in Time ax(t) + by() x(1 - 1) Clux(1) x*) *(-1) x(ar) (t) K) + ) X(t) (1) d sinwe! 180w -- ws) 8( + uro)) -0, otherwise 4.4 4.5 xy X(jw) (jw) 1 2X(Han) • Y(ja) xw jax(jw) x(i) 1 2w 8(w) dola, 0, 0 this is the Fourier series representation for any choice of T>0 4.3.4 di (1) 4.3.4 s x(Old! 1 jeux(jas) + "X(0)8(0) Periodic square wave 1. [ <T; x(i) - 0. Till and x{1+T)x() - { <5} * 2 sin kuni 71 8600 - kwa ? ) " sinc kwot Integration Differentiation in Frequency , 7 sin ko kw d 4.3.6 Tx() da(w) 3 84 - 11) 81 ?" 2016 - 2014 a. - for alle - 4.3.3 Conjugate Symmetry X(t) real for Real Signals x(jw) - X'(-10) Relx(j)) - ReX(-)) Sm{X())---(-)) X(w) - X(-1) X(0) --X(-) X(jw) real and even 2 sin aTi x(0) 1. WT 10. W>T xo 4.3.3 sin W W > الله X() - { 4.3.3 X(jw) purely imaginary and odd 0. > W Symmetry for Real and X(t) real and even Even Signals Symmetry for Real and X(t) real and odd Odd Signals Even-Odd Decompo- x) = $v{x() [x(t) real] sition for Real Sig. xo(t) = Od(x() [x() real] - )} (1] nals 8(7) 1 4.3.3 RelX(jo) mo{X(jw)) MO) 1 jo +8) 8(1-10) eu(t). Oefa) > 0 1 d+ja 4.3.7 Parseval's Relation for Aperiodic Signals 1 27 120d = SixCjwildu teu(t), Re{a} > 0 1 1 (a + jo "(t). # Rela) >0 1 (a + jos)

TABLE 5.1 PROPERTIES OF THE DISCRETE-TIME FOURIER TRANSFORM TABLE 5.2 BASIC DISCRETE-TIME FOURIER TRANSFORM PAIRS Signal Fourier Transform Fourier Series Coefficients (if periodic) Section Property Fourier Transform 27k Sate/2/ k(N) 2-3 4:06. - Porte)" at Aperiodic Signal x[n] y[n] ax[n] + by[n] x[n- ne] efon 2ΗΣ 8(a) - wo - 291) 5.3.2 5.3.3 5.3.3 5.3.4 5.3.6 Linearity Time Shifting Frequency Shifting Conjugation Time Reversal (a) Wo 1, km, m N.m + 2N.... ak 0, otherwise (b) irrational → The signal is aperiodic pjuve x[n] X(el) periodic with Y(el) period 27 aX(eds) + by (el) ejung X (edit) X(ell-wron) X'(el) X(e) X(elle) X(el)Y(em) coswort 5.3.7 Time Expansion **[n] x[-n] x[n/k], if n = multiple of k 0, if n #multiple of k x[n]* y[n] x[n]y[n] (81W - wo - 20/) + 8(w + wo - 25/)} (a) wo = 2 * k = Im Im IN, Im + 2N,... ak otherwise (b) irrational → The signal is aperiodic 5.4 Convolution Multiplication 5,5 2. fe xem93%clamando sinon ΤΣ {$(w - wo -2m) - 8(w + wo - 29/)) (a) WO = 21 karir Nr + 2N.... k = --.-- N.-r + 2N... 0, otherwise (b) irrational → The signal is aperiodic 5.3.5 Differencing in Time x[n] – x[n - 1] (1-7)X(el) 1 5.3.5 Accumulation ΣΑΚΙ x[n] = 1 23 8(w - 2m!) k = 0, UN, +2N.... 0, otherwise -- +7X(eº) E 816 – 2017) dX(el) ke=0 5.3.8 Differentiation in Frequency nx[n] Periodic square wave i, in sN x[n] - 0. N, < SN/2 and x[n+ N] = x[n] 21 * ...) sin[(2nk/N(N + )] N sin[27/2N] k+ , N , +2N,... 2N, +1 Nk = 0, 1N, 121.... 8n-kN] 5.3.4 Conjugate Symmetry for (-)。川 - for all k x[n] real Real Signals X(elu) = X*(eds) Re{X(e))} = Re{X(e-/-)} 978{X(e))} = --In{X(e-ju |X(e) = X(e) X(e) = - *X(ej) X(e) real and even au[n], lal! |-- 5.3.4 xre) 1, In S N 10 In> sin[w(N, + ) sin(w/2) 5.3.4 Symmetry for Real, Even x[n] real an even Signals Symmetry for Real, Odd x{n} real and odd Signals Even-odd Decomposition x[n] = {{x[n]} [x[n] real] of Real Signals xo[n] = Od{x{n}} (x[n] real] Parseval's Relation for Aperiodic Signals We sinc (3 sin W 5.3.4 X(1) purely imaginary and odd Re{X(ed)} jm{X(el)} X(w) = (1, 0 = 0 = W 10 W <3 X(w) periodic with period 2 0 <W <T 8[n] 1 5.3.9 un πδίω - 2nk) [ Himle = r pacemy do 1 -- + =- 8[n-nol (n + 1)a":[n), la <1 1 (I - ae" } } (n+r-1)! n!( ra"[n]. Walt 1 (1 -ae-jwy
Join a community of subject matter experts. Register for FREE to view solutions, replies, and use search function. Request answer by replying!
Post Reply