Question 8 (1 point) Find the Fourier series representation of the function -5 when - T < t < 0 f(t) = 5 when 0 < t < T The function is of period 27. 10 2 f(t) = - [2 sin(t) + sin(3t) +...] ㅠ 5 2 f(t) == [2 sin(t) + sin(3t) + ㅠ 3 2 f(t) [2 sin(t)+sin(3t) + 3 f(t) = = (2 sin(t)- = —— 10 ㅠ 5 - [2 - π sin(3t)+...] 2 sin(t) + sin(3t) +…..] 3
Find the Fourier series representation of the function ¹(1) [9(1+t) when −1≤ t ≤0 t 10 when 0 < t < 1 The function is of period 2. 9 9 + cos(πt) - s sin(at) -sin(2πt) + cos(3πt) 3 -sin(3πt) + - - - π 2π π 9 18 9 3 2 -cos(πt) + sin(t) -sin(2πt) - -cos(3πt) + -sin(3πt) + ㅠ πT² 2πT ㅠ πT² 18 9 9 3 -cos(πt) -sin(at) -sin(2πt) + -cos(3πt) -sin(3πt) + - π 2π ㅠ 9 9 2 3 -cos(πt) -sin(at) cos(2πt) + sin(2nt) — cos(3nt) + - - - π 2πT πT² ㅠ 9 4 9 4 4 - 4 + + 18 - 9 - - 2
For the formula of the nth term an of a sequence {an}, an = (-1)+¹(4n – 3). Find the values of a₁ and a2 a1 (Simplify your answers. Type integers or fractions.) The value of a1 A/ The value of A a2
Question 8 (1 point) Find the Fourier series representation of the function -5 when - T < t < 0 f(t) = 5 when 0 < t < T
-
- Site Admin
- Posts: 899603
- Joined: Mon Aug 02, 2021 8:13 am