4-3. In a binary polymer melt, species A and B, a modified Flory-Huggins (see de Gennes [15]) free energy per monomer ca
Posted: Sat May 21, 2022 5:14 pm
4-3. In a binary polymer melt, species A and B, a modified Flory-Huggins (see de Gennes [15]) free energy per monomer can be written as: F a? n-'[øln ø+(1 - 0) In(1-0)}+x®(1–0) + -(10) KT 360(1-0) where N is the number of monomers per chain (assumed equal for polymers A and B), 0 is the volume fraction of A, x is the Flory interaction parameter and a is a length such that Na? is the mean square end to end distance of one chain. Derive a linear diffusion equation describing spinodal decomposition in this polymer melt.