- 4 3 In A Binary Polymer Melt Species A And B A Modified Flory Huggins See De Gennes 15 Free Energy Per Monomer Ca 1 (170.78 KiB) Viewed 36 times
4-3. In a binary polymer melt, species A and B, a modified Flory-Huggins (see de Gennes [15]) free energy per monomer ca
-
- Site Admin
- Posts: 899603
- Joined: Mon Aug 02, 2021 8:13 am
4-3. In a binary polymer melt, species A and B, a modified Flory-Huggins (see de Gennes [15]) free energy per monomer ca
4-3. In a binary polymer melt, species A and B, a modified Flory-Huggins (see de Gennes [15]) free energy per monomer can be written as: F a? n-'[øln ø+(1 - 0) In(1-0)}+x®(1–0) + -(10) KT 360(1-0) where N is the number of monomers per chain (assumed equal for polymers A and B), 0 is the volume fraction of A, x is the Flory interaction parameter and a is a length such that Na? is the mean square end to end distance of one chain. Derive a linear diffusion equation describing spinodal decomposition in this polymer melt.