- Slack 10 04 P U P 1 2 P U Q 0 5 P U V 10p U P 0 8 P U Q02 P U 10 035 P U 10 025 P U V 1 04 P P 1 3 P Figure 1 (32.74 KiB) Viewed 64 times
(Slack) 10.04 p.u. P=1.2 p.u. Q=0.5 p.u. V-10p.u. P=0.8 p.u Q02 p.u. 10.035 p.u. 10.025 p.u. V=1.04 p. P,- 1.3 p. Figure
-
- Site Admin
- Posts: 899603
- Joined: Mon Aug 02, 2021 8:13 am
(Slack) 10.04 p.u. P=1.2 p.u. Q=0.5 p.u. V-10p.u. P=0.8 p.u Q02 p.u. 10.035 p.u. 10.025 p.u. V=1.04 p. P,- 1.3 p. Figure
(Slack) 10.04 p.u. P=1.2 p.u. Q=0.5 p.u. V-10p.u. P=0.8 p.u Q02 p.u. 10.035 p.u. 10.025 p.u. V=1.04 p. P,- 1.3 p. Figure Q2 a) State TWO (2) assumptions made to Newton Raphson load flow technique that leads to the Fast Decoupled load flow technique. [CO1-P01:01] (3 marks) b) Convert all impedances from the impedance diagram shown in Figure Q2 to the admittance and sketch the admittance diagram. [CO2-PO2:C3) (4 marks) c) Identify the variables VK, OK, Pk, and Qx from the Figure Q2 for bus of k=1, 2, 3. [CO2-PO2:C4) (3 marks)