- 1 1 For The Integral 2 E 2 Sin 3x Dx Given That The Exact Value 0 227498227 Le Xeyli 2 Sin 36 120 4 And Given 1 (30.26 KiB) Viewed 63 times
1 1) For the integral 2 e 2* sin(3x)dx, given that the exact value 0.227498227, le , xeyli 2* sin(36) - 120 4 and given
-
- Site Admin
- Posts: 899603
- Joined: Mon Aug 02, 2021 8:13 am
1 1) For the integral 2 e 2* sin(3x)dx, given that the exact value 0.227498227, le , xeyli 2* sin(36) - 120 4 and given
1 1) For the integral 2 e 2* sin(3x)dx, given that the exact value 0.227498227, le , xeyli 2* sin(36) - 120 4 and given that max, e-2x sin(3x) =0.432 x 0,2] max x 0,2]lace Xsin(3x) =12 max 3x= {0,2] dx a) Use these information and apply the composite Trapezoidal, composite Simpson's and composite Midpoint rules to approximate this integral with n=6. b) Find the absolute error in the approximation for each rule c) Find the bound of error for each rule.