- The Heights Of Students Are Approximately Normally Distributed With A Mean Of 162 Centimeters And A Standard Deviation O 1 (49.57 KiB) Viewed 85 times
The heights of students are approximately normally distributed with a mean of 162 centimeters and a standard deviation o
-
- Site Admin
- Posts: 899603
- Joined: Mon Aug 02, 2021 8:13 am
The heights of students are approximately normally distributed with a mean of 162 centimeters and a standard deviation o
The heights of students are approximately normally distributed with a mean of 162 centimeters and a standard deviation of 12 centimeters. Suppose random samples of size 44 are drawn from this population and the sample means recorded to the nearest tenth of a centimeter. Probabilities for the standard normal distribution Table alry is the pag bing to the of 62 DO 01 GO 03040 031 01 02 N 3310 10.5998 0.543 58 0517 0.007 0.54 0.50 0.5635 0714 1795 02 05793 SIZ 5871.9910 0.98 0.597 S 0.6054 6102 64141 06170617 OS DADI O OD 417 04554 0.6591 66 660 067 0672 64120 05 0.15 0 S 0.7019 0.74 0.70 6.7123 0.7157 0.7190 7224 06 0.7257 0.7301 7334 0.7387 739 0.5403 07454 0.746 0.7507 1.7540 O 0.750 0.7611 650 0.73 0.77 0.976 077 07794 0.7623 08.10 6.7000 97. GOS 0 0 0 1 62212 OR BOM OS X CMS 10.MAIN OSO OSS GREGAS GASSE 0571 BS EMOI IN 20 1 0.8613 0.6 0.8586 206 x 29 03140 mm exrO BIO O 12 MONOWAR OVOGNO 2013 130.00 0.00 0.00 0.002 0.03113 09131 0.31479 69177 14 0.9192 0.07 2222 921 eus 225 929292 6 10 130.9332 09345 9337 0.9370 698 09391 0940 992 16 0.9452 0.93 69474 e osses 955 09525695 69545 17 0.15 0.25 69573 9991 0950 090642533 1.5 0.9641 0.9649 94863664 S516963 19685 0.9093 0949 190.971) 6.719 726 732 738 974 990 0.9756.761 977 20 0.972 0.97 988 3 0 3 09 98129 21 0.921 6.926 858300383 0.9238 00 956 0.9850 69854 987 22 0.951 6.9854 856 09891 2.975 975 0984 98T 23 0.3 0.9 0.90 0.00 0.0 01 03.16 24 0.9918 G930 922 92 927 9911 6.9954.9936 25 0.901 6.994 941 2012 26 09953 6.9955. 091 27 0.0065 0.906 9067 092 93 94 286.90974 09975 1976 1977 977 99 0.9979 990 29 0.91 0.9962 992 993 0994 99 3.9985 99869986 10.UT 7 TE . 90 31 0.999.9991 391 391 92 990 0.990 993 9993 12 0.9993 0.9993 3949949494994 1995 1995 6.9999999999969997 34 097 6.99799099997 097 97 98 52 Determine the probability that the sample mean (h) is falling below 164.01 centimeters. (The answer should be a number rounded to five decimal places, don't use symbols such as %)