Exercise 6.33. Show that the Discrete Fourier Transform in CN of the Fourier basis vector e; is given by the standard basis vector sj, that is, j = sj, for 0 ≤ j≤N-1. Start with the case N = 4. Although the Fourier basis is not localized at all, its Fourier trans- form is as localized as possible. We say the Fourier basis is localized in frequency, but not in space or time.
Join a community of subject matter experts. Register for FREE to view solutions, replies, and use search function. Request answer by replying!