- 1 (74.26 KiB) Viewed 53 times
6. a. (17 points) Let f(x, y) = xexy − 4√x² + y². Evaluate and af a² f ду əxəy 6. b. (20 points) Let ƒ (x, y) = x³ − y²
-
- Site Admin
- Posts: 899603
- Joined: Mon Aug 02, 2021 8:13 am
6. a. (17 points) Let f(x, y) = xexy − 4√x² + y². Evaluate and af a² f ду əxəy 6. b. (20 points) Let ƒ (x, y) = x³ − y²
6. a. (17 points) Let f(x, y) = xexy − 4√x² + y². Evaluate and af a² f ду əxəy 6. b. (20 points) Let ƒ (x, y) = x³ − y² − 12x + 4y + 2. Use the First Derivative Test to find the (x, y) coordinates of all the points at which the function possibly has a relative maximum or a relative minimum. Then use the formula D(x, y) = (2²²) (3²²) – (32²5 a²f əxəy to determine whether those points are the locations of the relative maximums, relative minimums, saddle points, or "undetermined" by the Derivative Test. 2