Question 13 6 pts A 0.04 m³ tank contains 13.7 kg of air at a temperature of 190 K. Using the van de Waal's equation, wh
-
- Site Admin
- Posts: 899603
- Joined: Mon Aug 02, 2021 8:13 am
Question 13 6 pts A 0.04 m³ tank contains 13.7 kg of air at a temperature of 190 K. Using the van de Waal's equation, wh
Question 13 6 pts A 0.04 m³ tank contains 13.7 kg of air at a temperature of 190 K. Using the van de Waal's equation, what is the pressure inside the tank? Express your answer in kPa. Question 15 6 pts The actual Rankine cycle has an 87.03% turbine isentropic efficiency and 80.65% pump isentropic efficiency. If in the ideal Rankine cycle, the heat input in the boiler = 900 kW, the turbine work output = 392 kW, and pump work input = 19 kW, what is the actual cycle thermal efficiency if the heat input in the boiler is the same for the actual cycle? Express your answer in percent. Question 14 6 pts 3.4 kg/s of carbon dioxide undergoes a steady flow process. At the inlet state, the reduced pressure is 2 and the reduced temperature is 1.3. At the exit state, the reduced pressure is 3 and the reduced temperature is 1.7. Using the generalized compressibility and correction charts, what is the rate of change of total enthalpy for this process? Use cp = 0.978 kJ/kg K. Express your answer in kW. Question 17 6 pts In a reheat cycle with one stage of reheat, the steam leaving the high-pressure turbine is reheated before it enters the low-pressure turbine. For the ideal cycle, the heat input in the boiler is 898 kW, the high-pressure turbine work output is 142 kW, the low-pressure turbine work output is 340 kW, and the input work to the pump is 15 kW. If the efficiency of the ideal reheat cycle is 36.5%, what is the heat transfer in the condenser? Express your answer in kW.