- 2 A Let The Random Variables X And Y Have The Joint Distribution 0 X 0 Or Y 0 0 X 4 Fxy X Y 5 X E X 1 Y 4 1 (64.58 KiB) Viewed 10 times
2. (a) Let the random variables X and Y have the joint distribution 0, x <0 or y < 0 0≤x≤ 4 Fxy(x, y) = 5/x+e-(x+1)y² 4
-
- Site Admin
- Posts: 899603
- Joined: Mon Aug 02, 2021 8:13 am
2. (a) Let the random variables X and Y have the joint distribution 0, x <0 or y < 0 0≤x≤ 4 Fxy(x, y) = 5/x+e-(x+1)y² 4
2. (a) Let the random variables X and Y have the joint distribution 0, x <0 or y < 0 0≤x≤ 4 Fxy(x, y) = 5/x+e-(x+1)y² 4 x+1 1 (1 + ²/²e-5y² - 5 e-v², е е 4 4 -e-x²), 4 ≤ x and any y ≥ 0 (i) Find the marginal distributions Fx (x) and Fy(y). (ii) Compute the joint probability P(3 < X < 5,1 <Y ≤ 2). (iii) Compute the conditional probability P(3 < X < 51 <Y ≤ 2)