- Problem F 95 6 Define Lg X G C C G 1 On 0 A Denote Q X Min Q X 0 We Seek Conditions On Q X 1 (41.83 KiB) Viewed 38 times
Problem (F’95, #6). Define Lg(x) = -g” (c)+((c)g(1) on (0, a). Denote q-(x) = min(q(x), 0). We seek conditions on q-(x)
-
- Site Admin
- Posts: 899603
- Joined: Mon Aug 02, 2021 8:13 am
Problem (F’95, #6). Define Lg(x) = -g” (c)+((c)g(1) on (0, a). Denote q-(x) = min(q(x), 0). We seek conditions on q-(x)
Problem (F’95, #6). Define Lg(x) = -g” (c)+((c)g(1) on (0, a). Denote q-(x) = min(q(x), 0). We seek conditions on q-(x) so that I will be nonnegative definite on C (0, a), i.e., = a (Lộ, 6) = () Lộ (2) da 20 Vo e CO (0,a). (5.24) Find optimal conditions on q-(c) so that (5.24) holds. Can q-(x) be unbounded and (5.24) still hold?