b. Draw the
cross-sectional “body diagonal” view in 2-D and demonstrate the
math required to obtain the cubic edge length (a) in relation to
atomic radius (R) in a BCC unit cell.
c. Determine the
cubic edge length of the Molybdenum (Mo) unit cell.
(Hint: Use Table 3.1 in supplemental
materials)
d. Prove that the unit cell volume
(Vuc) of a BCC unit cell equals R3.
e. What atomic packing factor (APF) would you expect
for (Mo)? Please demonstrate mathematically.
f. If the atomic weight of Mo = 95.95 g/mol,
calculate the theoretical density (ρ) in terms of
(g/cm3).
Table 3.1 Crystal Atomic Radius Crystal Atomic Metal Structure (nm) Metal Structure Radius (nm) Aluminum FCC 0.1431 Molybdenum BCC 0.1363 Cadmium HCP 0.1490 Nickel FCC 0.1246 Chromium BCC 0.1249 Platinum FCC 0.1387 Cobalt HCP 0.1253 Silver FCC 0.1445 Copper FCC 0.1278 Tantalum BCC 0.1430 Gold FCC 0.1442 Titanium (a) HCP 0.1445 Iron (a) BCC 0.1241 Tungsten BCC 0.1371 Lead FCC 0.1750 Zinc HCP 0.1332 "FCC = face-centered cubic: HCP = hexagonal close-packed: BCC = body-centered cubic. "A nanometer (nm) equals 10m; to convert from nanometers to angstrom units (Å), multiply the nanometer value by 10.
b. Draw the cross-sectional “body diagonal” view in 2-D and demonstrate the math required to obtain the cubic edge lengt
-
- Site Admin
- Posts: 899603
- Joined: Mon Aug 02, 2021 8:13 am