TABLE 6.2 Common Laplace Transform Pairs 1 u(t). S 1 e-cs u(t) - u(tc). ,c> 0 S tNu(t)= N! sN+1' N 1, 2, 3, ... 8(t) → 1

Business, Finance, Economics, Accounting, Operations Management, Computer Science, Electrical Engineering, Mechanical Engineering, Civil Engineering, Chemical Engineering, Algebra, Precalculus, Statistics and Probabilty, Advanced Math, Physics, Chemistry, Biology, Nursing, Psychology, Certifications, Tests, Prep, and more.
Post Reply
answerhappygod
Site Admin
Posts: 899603
Joined: Mon Aug 02, 2021 8:13 am

TABLE 6.2 Common Laplace Transform Pairs 1 u(t). S 1 e-cs u(t) - u(tc). ,c> 0 S tNu(t)= N! sN+1' N 1, 2, 3, ... 8(t) → 1

Post by answerhappygod »

Table 6 2 Common Laplace Transform Pairs 1 U T S 1 E Cs U T U Tc C 0 S Tnu T N Sn 1 N 1 2 3 8 T 1 1
Table 6 2 Common Laplace Transform Pairs 1 U T S 1 E Cs U T U Tc C 0 S Tnu T N Sn 1 N 1 2 3 8 T 1 1 (63.56 KiB) Viewed 23 times
Table 6 2 Common Laplace Transform Pairs 1 U T S 1 E Cs U T U Tc C 0 S Tnu T N Sn 1 N 1 2 3 8 T 1 2
Table 6 2 Common Laplace Transform Pairs 1 U T S 1 E Cs U T U Tc C 0 S Tnu T N Sn 1 N 1 2 3 8 T 1 2 (60.23 KiB) Viewed 23 times
TABLE 6.2 Common Laplace Transform Pairs 1 u(t). S 1 e-cs u(t) - u(tc). ,c> 0 S tNu(t)= N! sN+1' N 1, 2, 3, ... 8(t) → 1 8(tc) e, c> 0 1 e-bu(t). s + b' tNe-btu(t) (cos wt)u(t) (sin wt)u(t) >>> (cos² wt)u(t) (sin² wt)u(t). (e-bt → b real or complex N! (s + b) N+¹¹ S → + w² W + w² s² + 2w² s(s² + 4w²) 2w² s(s² + 4w²) 5² 52 به cos wt)u(t) sin wt)u(t) s + b (s + b)² + w² @ (s + b)² + w² 5² w² (s² + ²)² 2ws + ²)² (s + b)² - w² [(s + b)² + w²1² 2w (s + b) [(s + b)² + w²1² (t cos wt)u(t) (t sin wt)u(t)< (te-br cos wt)u(t) (te-bt sin wt)u(t). → N = 1, 2, 3, ... (s² →→→→
6.4. Using the transform pairs in Table 6.2 and the properties of the Laplace transform in Table 6.1, determine the Laplace transform of the following signals: (a) x(t) (e-bt cos²wt)u(t) (b) x(t) = (ebt sin²wt)u(t) (c) x(t) = (t cos²wt)u(t) (t sin²wt)u(t) (d) x (t) = (e) x(t) (cos³wt)u(t) (f) x(t) = (sin³wt)u(t)
Join a community of subject matter experts. Register for FREE to view solutions, replies, and use search function. Request answer by replying!
Post Reply