2. This question concerns the following elementary liquid-phase reaction: AB+C (a) Express the net rate of reaction in t

Business, Finance, Economics, Accounting, Operations Management, Computer Science, Electrical Engineering, Mechanical Engineering, Civil Engineering, Chemical Engineering, Algebra, Precalculus, Statistics and Probabilty, Advanced Math, Physics, Chemistry, Biology, Nursing, Psychology, Certifications, Tests, Prep, and more.
Post Reply
answerhappygod
Site Admin
Posts: 899603
Joined: Mon Aug 02, 2021 8:13 am

2. This question concerns the following elementary liquid-phase reaction: AB+C (a) Express the net rate of reaction in t

Post by answerhappygod »

2 This Question Concerns The Following Elementary Liquid Phase Reaction Ab C A Express The Net Rate Of Reaction In T 1
2 This Question Concerns The Following Elementary Liquid Phase Reaction Ab C A Express The Net Rate Of Reaction In T 1 (76.82 KiB) Viewed 14 times
2. This question concerns the following elementary liquid-phase reaction: AB+C (a) Express the net rate of reaction in terms of the initial concentration and conversion of A and the relevant rate constants. [5 marks] (b) Determine the equilibrium conversion for this system. [6 marks] (c) If the reaction is carried out in an isothermal PFR, determine the volume required to achieve 90% of your answer to part (b). Use numerical integration where appropriate. [6 marks] (d) For this specific case, discuss ways in which you can maximise the amount of B that can be obtained. [3 marks] Data: = CAO = 2.5 kmol m-3 Vo = 3.0 m3n-1 krwd = 10.7 h-1 krev = 4.5 [kmol m-31-n-1 h -1 [Total = 20 Marks]
R = 8.3145J/mol K = 1.98 cal/mol K The formulae below are for the following reaction where A is the limiting reactant: aA + bB → CC + dD Excess Ratio: NBo a y = b Nao Kinetics: -Eact/RT (-ra) = KC AC3 k=Ae Conversion: Constant Volume Systems: C; = Cio + VCAOX CA = CAO(1 - x) Variable Volume Systems: E = y208 6-689- )- C d b -+---- ка a a а. = Vi i=1 Cio + viCAOX C = (1 + EX) (1 – X) CA = CAO (1 + EX) Design Equations: 影。 -X NAO Batch Reactor: t= dx JO (-A) V CSTR: V= FAOX (-ra) > T = Vo FAO PFR: V= so dx (مr-)
Numerical Integration: Χη Xnxo Trapezium Rule: ydx = Elyo +2(y, + y2 + y2 + ... + Yo-1) +yn]; n = [h n- n Хо -X2 h Simpson's Rule: = + ; h = X2 - Xo 2 Хо **tx = $ \x + 4%, + ve]n=**** ydx [48 (»-Mlvo , n-* L*ydx = '5lvo + 4y, + 2y2 + 4x +ya] n = *s ** n-- -X3 ydx = 3 8 h[y. + 3y, + 3y2 +y3]; h X3 – XO 3 Хо [4y2 ; h = X4 4
Join a community of subject matter experts. Register for FREE to view solutions, replies, and use search function. Request answer by replying!
Post Reply