K G(S) = (s + 3)2 and H(S) = 1. (s + 5) (s + 1)(s + 4) Gp(s) = O R(s) E(s) e(t) Gc(s) Ge(s) C(s). c(t) r(t) + H(s) Figur
-
- Site Admin
- Posts: 899603
- Joined: Mon Aug 02, 2021 8:13 am
K G(S) = (s + 3)2 and H(S) = 1. (s + 5) (s + 1)(s + 4) Gp(s) = O R(s) E(s) e(t) Gc(s) Ge(s) C(s). c(t) r(t) + H(s) Figur
K G(S) = (s + 3)2 and H(S) = 1. (s + 5) (s + 1)(s + 4) Gp(s) = O R(s) E(s) e(t) Gc(s) Ge(s) C(s). c(t) r(t) + H(s) Figure Q1a
[6 marks] (d) With the aid of the Routh-Hurwitz stability criterion, investigate the range of the gain that would guarantee the stability of the system and hence, find the frequency of oscillation at the marginal stability point. [8 marks)