jupyter miniproject compiled_REV1 (autosaved) Ed View Insert Cell Kernel Widgets Help Run C Markdown File 5 x21 ↑ I 2000

Business, Finance, Economics, Accounting, Operations Management, Computer Science, Electrical Engineering, Mechanical Engineering, Civil Engineering, Chemical Engineering, Algebra, Precalculus, Statistics and Probabilty, Advanced Math, Physics, Chemistry, Biology, Nursing, Psychology, Certifications, Tests, Prep, and more.
Post Reply
answerhappygod
Site Admin
Posts: 899603
Joined: Mon Aug 02, 2021 8:13 am

jupyter miniproject compiled_REV1 (autosaved) Ed View Insert Cell Kernel Widgets Help Run C Markdown File 5 x21 ↑ I 2000

Post by answerhappygod »

Jupyter Miniproject Compiled Rev1 Autosaved Ed View Insert Cell Kernel Widgets Help Run C Markdown File 5 X21 I 2000 1
Jupyter Miniproject Compiled Rev1 Autosaved Ed View Insert Cell Kernel Widgets Help Run C Markdown File 5 X21 I 2000 1 (36.83 KiB) Viewed 40 times
Jupyter Miniproject Compiled Rev1 Autosaved Ed View Insert Cell Kernel Widgets Help Run C Markdown File 5 X21 I 2000 2
Jupyter Miniproject Compiled Rev1 Autosaved Ed View Insert Cell Kernel Widgets Help Run C Markdown File 5 X21 I 2000 2 (38.9 KiB) Viewed 40 times
Jupyter Miniproject Compiled Rev1 Autosaved Ed View Insert Cell Kernel Widgets Help Run C Markdown File 5 X21 I 2000 3
Jupyter Miniproject Compiled Rev1 Autosaved Ed View Insert Cell Kernel Widgets Help Run C Markdown File 5 X21 I 2000 3 (80.32 KiB) Viewed 40 times
Jupyter Miniproject Compiled Rev1 Autosaved Ed View Insert Cell Kernel Widgets Help Run C Markdown File 5 X21 I 2000 4
Jupyter Miniproject Compiled Rev1 Autosaved Ed View Insert Cell Kernel Widgets Help Run C Markdown File 5 X21 I 2000 4 (80.32 KiB) Viewed 40 times
Jupyter Miniproject Compiled Rev1 Autosaved Ed View Insert Cell Kernel Widgets Help Run C Markdown File 5 X21 I 2000 5
Jupyter Miniproject Compiled Rev1 Autosaved Ed View Insert Cell Kernel Widgets Help Run C Markdown File 5 X21 I 2000 5 (31.48 KiB) Viewed 40 times
Jupyter Miniproject Compiled Rev1 Autosaved Ed View Insert Cell Kernel Widgets Help Run C Markdown File 5 X21 I 2000 6
Jupyter Miniproject Compiled Rev1 Autosaved Ed View Insert Cell Kernel Widgets Help Run C Markdown File 5 X21 I 2000 6 (91.93 KiB) Viewed 40 times
Jupyter Miniproject Compiled Rev1 Autosaved Ed View Insert Cell Kernel Widgets Help Run C Markdown File 5 X21 I 2000 7
Jupyter Miniproject Compiled Rev1 Autosaved Ed View Insert Cell Kernel Widgets Help Run C Markdown File 5 X21 I 2000 7 (36.9 KiB) Viewed 40 times
jupyter miniproject compiled_REV1 (autosaved) Ed View Insert Cell Kernel Widgets Help Run C Markdown File 5 x21 ↑ I 2000- 2000- 1500- 1000- 1500- 1000- 000- 120000 100000- 80000 60000- 40000 20000- 000 1500 2000 Ana 1000 2000 Roma 12 1000 Customer 00000 Sales 100000 Not Theled Python
In [665]: plt. figure(figsize=(10, 7)) plt.scatter(data[:,0], data[:,1], cecluster. labels, cnape' rainbow) Out 655) Ceatplotlib.collections.PathCollection at ex192e4a7cdc0> 120000 100000 80000 60000 40000 20000 AKO 655 20 40 35 21, atyperint64) 200 In [666]: SupermarketData, isnull().sum() Out front. Stone Anna 1000 1200 1400
In [ ]: In [659]: supermarket data = pd. read_csv('stores.csv') In [660]: Out [660]: In [661]: Out [661]: supermarket_data.shape (896, 5) supermarket_data.head() Store ID Store_Area Items_Available Daily Customer_Count Store_Sales 0 1 2 32 1 Store Sales 2 3 5 1659 1461 1340 1451 1770 In [662]: In [663]: plt.figure(figsize=(10, 7)) 1961 1752 1609 1748 2111 data = supermarket_data.iloc[:, 3:5].values 530 210 720 620 450 plt.title("Customer Dendograms") dend=shc.dendrogram (shc.linkage(data, method='ward")) 66490 39820 54010 53730 46620
[662]: data= supermarket data.iloc[:, 3:5].values [663]: plt.figure(figsize=(10, 7)) plt.title("Customer Dendograms") denda shc.dendrogram(she.linkage (data, methods'ward")) Customer Dendograms 00000 500000 3 400000 In [664] clusters AgglomerativeClusteringin clusteress, affinitys euclidean, linkagesward") cluster.fit predict(data) 100000 Out[nay[1, , 2, 2, 2. 2, 2, 0, 1, 0, 4, 8, 2, 3, 4, 4, 1, IT E X 4 R ( % 45 B T 4, 1, 1, 1, 1, 2, 6 1, 0, 4, 0, 2, 1, 2, 2, 3, 7, 1, 1, 2, 2, 3, 4, 1 Y & 7 FB U * EP 8 1
665]: plt.figure(figsize=(10, 7)) plt.scatter(data[:,0], data[:,1], c-cluster.labels, cmap="rainbow') [665]: <matplotlib.collections.PathCollection at 0x192e4a7cdc0> 120000 1, 2, 0, 1, 3, 2, 1, 0, 4, 1, 0, 4, 4, 0, L dy dy dy 4, 2, 4, 2, 2, 4, 3, 2, 1, 1, 0, 3, 2, 0, 3, 3, 2, 3, 1, 2, 2, 1, 4, 0, 2, 4, 0, 4, 1, 1, 0, 0, 4, 4, 2, 3, 4, 1, 2, 0, 2, 0, 0, 4, 0, 0, 4, 0, 0, 3, 4, 0, 2, 1, 3, 1, 3, 4, 4, 2, 1, 4, 3, 2, 3, 2, 1, 0, 2, 0, 2, 2, 1, 1, 3, 4, 3, 1, 4, 4, 3, 3, 2, 0, 1, 2, 1, 2, 1, 1, 1, 2, 1, 0, 1, 4, 2, 0, 4, 4, 0, 4, 1, 1, 4, 3, 2, 3, 4, 1, 2, 3, 4, 2, 4, 1, 0, 1, 1, 4, 3, 1, 2, 2, 2, 4, 1, 2, 3, 2, 4, 3, 3, 3, 1, 1, 3, 2, 1, 0, 2, 2, 2, 2, 4, 1, 2, 2, 0, 4, 0, 2, 1, 4, 0, 2, 0, 4, 0, 4, 1, 2, 2, 4, 4, 2, 2, 1, 4, 4, 1, 1, 4, 1, 0, 3, 4, 3, 0, 1, 2, 4, 2, 0, 2, 0, 0, 0, 3, 1, 3, 1, 2, 3, 1, 2, 3, 4, 3, 4, 4, 1, 1, 1, 2, 2, 0, 1, 1, 3, 0, 2, 1, 1, 3, 1, 3, 2], dtype=int64) 100000 80000 60000 40000 20000 200 800 1000 1200 1400 L 1600 4
Edit View Insert Cell Kernel Widgets Help CMarkdown 20 Name: Store Sales, dtype: float64 n [672]: data = pd.read_csv('Stores.csv') idssdata[ 'Store ID '] In [673]: data.isnull().sum() Out [673]: Area Items Customer Sales dtype: int64 Run data.drop('Store ID ,axis=1, inplace=True) data data.rename (columns=("Store Area": "Area", "Items Available": "Items", "Daily Customer Count": "Customer", "Stor 4 plt.show() 0 In [674]: sb.set_theme(style="ticks") 2500- 0 0 0 2000- 1500- g=sb.pairplot (data, diag kinds"kde", corner=True) g.map_lower(sb.kdeplot, levelss), colors".2") V Not Trusted I Py
Join a community of subject matter experts. Register for FREE to view solutions, replies, and use search function. Request answer by replying!
Post Reply