Page 1 of 1
(3 marks) The general solution of the homogeneous differential equation d² (23 (2) − 6 —y (2) +9y (z) = 0 "h = Aema + Br
Posted: Sat Jul 09, 2022 2:24 pm
by answerhappygod

- 3 Marks The General Solution Of The Homogeneous Differential Equation D 23 2 6 Y 2 9y Z 0 H Aema Br 1 (40.89 KiB) Viewed 58 times
(3 marks) The general solution of the homogeneous differential equation d² (23 (2) − 6 —y (2) +9y (z) = 0 "h = Aema + Brema is given by where m = 3 and A and B are arbitrary constants. Let us now find a particular solution to the non-homogeneous differential equation d² 23 (2) - 6 = y(x) + 9 y(x) = 34 cos(5 z). da2 a) What form would you take as your guess for a particular solution? a sin 5x ar sin 5x + bæ cos5a ar sin 52 up: a sin 5x + b cos5x b) Find a particular solution up and enter it (of the above form, evaluating a and/or b) in the box below. bz cos5a c) Let ug be the general solution to the non-homogeneous differential equation d² d da2y (z)-6- (2) +9y (2) = 34 cos(5 z). b cos 5x
(2 marks) Consider the Maclaurin series for sin and cos z2k+1 (2k + 1)! sinn = Σ(1)", k=0 valid for all real . Using the power series above and the identity where sin (3x) = 3 sin z - 4 sin³ z, it follows that the Maclaurin series for sin³ is given by T sin³ x = Pr + Qx³+ '+. P = 0 and more generally and 1 dk= cos z = (-1) k k=0 k=0 (-1) dk7 Hol 22k (2k)! z2k+1 (2k + 1)! B.Q=