R”의 두 벡터 a b 에 대하여 다음 등식이 성립함을 보여라. (a) a·b = - ||a + b||2 4 -||a - b||2 4 (b)(a+b)·(a-b) = ||a|| - ||b||2 -

Business, Finance, Economics, Accounting, Operations Management, Computer Science, Electrical Engineering, Mechanical Engineering, Civil Engineering, Chemical Engineering, Algebra, Precalculus, Statistics and Probabilty, Advanced Math, Physics, Chemistry, Biology, Nursing, Psychology, Certifications, Tests, Prep, and more.
Post Reply
answerhappygod
Site Admin
Posts: 899603
Joined: Mon Aug 02, 2021 8:13 am

R”의 두 벡터 a b 에 대하여 다음 등식이 성립함을 보여라. (a) a·b = - ||a + b||2 4 -||a - b||2 4 (b)(a+b)·(a-b) = ||a|| - ||b||2 -

Post by answerhappygod »

 1
1 (12.86 KiB) Viewed 28 times
how do you show these statement qualifies?
R”의 두 벡터 a b 에 대하여 다음 등식이 성립함을 보여라. (a) a·b = - ||a + b||2 4 -||a - b||2 4 (b)(a+b)·(a-b) = ||a|| - ||b||2 -
Join a community of subject matter experts. Register for FREE to view solutions, replies, and use search function. Request answer by replying!
Post Reply