Page 1 of 1

Regression model: 𝑦 = 𝑎+ 𝑏𝑥+ 𝜖. Suppose that 𝑥 and 𝜖 are random

Posted: Tue Apr 12, 2022 10:52 am
by answerhappygod
Regression model: 𝑦 = π‘Ž+ 𝑏π‘₯+ πœ–.
Suppose that π‘₯ and πœ– are random variables, and parameters π‘Ž and
𝑏 are constants.
1. If π‘₯ and πœ– are negatively correlated i.e., πΆπ‘œπ‘£(π‘₯,πœ–) < 0,
how does it impact the estimation of parameter 𝑏 in the linear
regression model?
2. Suppose that the i.i.d samples (π‘₯1,…,π‘₯𝑛) are
realizations of the random variable π‘₯, and suppose that π‘₯ and πœ– are
independent. Given that
π‘‰π‘Žπ‘Ÿ(π‘₯)=𝐸[π‘₯βˆ’πΈ(π‘₯)]2= 1𝑛Σ(π‘₯π‘–βˆ’π‘₯Μ…)2𝑛𝑖=1
πΆπ‘œπ‘£(π‘₯,𝑦)= 𝐸[(π‘₯βˆ’πΈ(π‘₯))(π‘¦βˆ’πΈ(𝑦))]=1𝑛Σ(π‘₯π‘–βˆ’π‘₯Μ…)(π‘¦π‘–βˆ’π‘¦Μ…)𝑛𝑖=1,
consider the expression for the Least Square Estimator 𝑏 in Page
42 of Lecture 8’s slides β€œInventory Management III and
Forecasting”. Try to establish the expression for the estimator 𝑏
from the hints given above.