Hw07-2.2-SOLDE-HCC: Problem 5 Problem Value: 10 point(s). Problem Score: 0%. Attempts Remaining: 3 attempts. Help Enteri
Posted: Wed Jul 06, 2022 1:28 pm
Hw07-2.2-SOLDE-HCC: Problem 5 Problem Value: 10 point(s). Problem Score: 0%. Attempts Remaining: 3 attempts. Help Entering Answers See Example 2.2.5, 2.2.6, in Section 2.2, in the MTH 235 Lecture Notes. (10 points) Note: You have only 3 attempts in this problem. Find y(t) solution of the initial value problem y" -6y + 13 y = 0, y(0) = a, y (0) = b, where a and b are arbitrary constants. A. y(t) = (bcos(2t) + B. y(t) = (a cos(2t) + 2 b c. y(t) = (a cos(2t) + =sin(2t)) e³t D. y(t) = (b cos(3t) + E. y(t) = (b cos(2t) + F. y(t) = (b cos(3t) + G. y(t) = (a cos(2t) + H. y(t) = (a cos(3t) + (a 1 – 3b) sin(2t)) e³¹ 2 (b + 3a) sin(2t)) e-3t J. y(t) = (a cos(3t) + K. None of the above. (a − 2b) sin(31)) e²t -sin(2t)) e-3t - sin(3t)) e-2t sin(2t)) e³t 3 (a + 3b) 2 (a + 2b) 3 (b − 3a) 2 (b + 2a) -sin(3t)) e 3 a 1. y(t) = (b cos(2t) + =sin(2t)) e³t (b - 2a) 3 e-21 - sin(31)) e²t