Page 1 of 1

Using the accompanying Cost of Living Adjustments data to find the best multiple regression model to predict the salary

Posted: Wed Jul 06, 2022 12:11 pm
by answerhappygod
Using The Accompanying Cost Of Living Adjustments Data To Find The Best Multiple Regression Model To Predict The Salary 1
Using The Accompanying Cost Of Living Adjustments Data To Find The Best Multiple Regression Model To Predict The Salary 1 (37.93 KiB) Viewed 14 times
Using The Accompanying Cost Of Living Adjustments Data To Find The Best Multiple Regression Model To Predict The Salary 2
Using The Accompanying Cost Of Living Adjustments Data To Find The Best Multiple Regression Model To Predict The Salary 2 (60.29 KiB) Viewed 14 times
Using the accompanying Cost of Living Adjustments data to find the best multiple regression model to predict the salary as a function of the adjusted cost for living rates. What would the comparable salary be for a city with the following adjustments: groceries: 5%; housing: 8% ; utilities: -3%; transportation; -2%; and health care: 9% ? Use a level of significance of 0.05. Click the icon to view the Cost of Living Adjustments data table. Determine the best multiple linear regression model to predict the salary as a function of the other rates. Select the best answer below and fill in the corresponding answer boxes to complete your choice. (Type integers or decimals rounded to three decimal places as needed.) OA. Salary + groceries + housing + housing + OB. Salary groceries + OC. Salary groceries + OD. Salary groceries + OE. Salary= groceries + housing+healthcare OF. Salary groceries + housing + OG. Salary housing + utilities + OH. Salary housing (utilities + + + + + utilities + housing + utilities+transportation + healthcare utilities + transportation transportation+healthcare transportation+ healthcare utilities + healthcare transportation + healthcare transportation
Cost of Living Adjustments data table Comparative Groceries Housing Utilities Transportation Salary ($) 60,482 57,530 85,904 60,904 58,012 70,000 54,578 58,072 87,892 65,843 57,590 55,120 83,795 55,602 65,060 57,530 136,024 72,048 57,651 59,578 77,349 86,446 105,241 83,253 56,084 0.15 -0.08 0.16 0.18 0.11 0.23 0.01 0.12 0.20 0.07 -0.02 0.03 0.16 0.01 0.16 0.10 0.38 0.26 0.07 0.09 0.24 0.18 0.39 0.32 0.14 0.25 -0.10 0.13 -0.01 1.41 0.41 0.22 0.11 0.05 0.02 0.73 0.01 -0.01 -0.05 -0.04 -0.03 2.15 -0.06 0.64 -0.08 0.15 0.00 0.04 -0.11 1.69 0.10 0.02 -0.13 0.43 -0.10 0.24 -0.14 4.78 0.25 0.72 0.17 0.21 -0.08 0.21 -0.03 1.08 -0.17 1.87 0.18 3.05 0.03 1.33 0.02 -0.09 0.13 0.06 -0.01 0.11 -0.07 -0.02 0.18 -0.06 0.01 0.13 0.01 0.06 -0.06 0.29 0.05 0.10 -0.05 0.30 0.10 0.02 0.14 0.19 0.27 0.26 0.21 0.01 Health Care 0.05 0.06 0.33 0.10 0.06 0.02 -0.01 0.05 -0.03 0.11 -0.01 0.01 0.13 -0.08 0.08 0.01 0.19 0.03 0.01 -0.01 0.15 0.15 0.22 0.24 0.04 I O X