Suppose f(x, y) = √tan(z) + y and u is the unit vector in the direction of (0, 3). Then, (a) V f(x, y) =
Posted: Tue Jul 05, 2022 10:07 am
Suppose f(x, y) = √tan(z) + y and u is the unit vector in the direction of (0, 3). Then, (a) V f(x, y) = <sec^2(x)/(2sqrt(tan(x)+y)), 1/(2sqrt(tan(x)+y)< (b) Vf(-1.3,6)= <sec 2(1.3)/(2sqrt(6-tan(1.3))),1/(2sqrt (6-tan(1. (c) fu (-1.3,6)= Du f(-1.3,6)= 1 sec² (z) 2√tan (a)+y' 2√tan (z) + y sec² (1.3) 2√6-tan (1.3) 2/6-tan (1.3)
Posted: Tue Jul 05, 2022 10:07 am
Suppose f(x, y) = √tan(z) + y and u is the unit vector in the direction of (0, 3). Then, (a) V f(x, y) = <sec^2(x)/(2sqrt(tan(x)+y)), 1/(2sqrt(tan(x)+y)< (b) Vf(-1.3,6)= <sec 2(1.3)/(2sqrt(6-tan(1.3))),1/(2sqrt (6-tan(1. (c) fu (-1.3,6)= Du f(-1.3,6)= 1 sec² (z) 2√tan (a)+y' 2√tan (z) + y sec² (1.3) 2√6-tan (1.3) 2/6-tan (1.3)