Which of the following is TRUE if the Wronskian of the functions f1, f2,..., fn is identically zero? O The functions can
Posted: Tue Jul 05, 2022 10:02 am
solutions of a differential equation. O The linear independence or dependence of the functions is inconclusive. O The functions f₁, f2, ..., fn are linearly independent. The functions f1, f2, ..., fn are linearly dependent.
The general solution of (xy) (x dy + y dx) + e* dx + e dy = 0 is O None of these O xy² + e +e³ = C 1 (xy)² + e* + e³ = C O (xy)² + e +e³ = C
Which one is the correct expansion of O s³ L{F(t)} s² F(¹) (0) — sF(2) (0) - F(3) (0) - O None of the above ○ s³ L{F(t)} — s² F(¹) (0) — sF(²) (0) — F(³) (0) ○ s³ L{F(t)} s² F(0) — sF(¹) (0) — F(2) (0) L{F(³) (t)}
Which of the following is TRUE if the Wronskian of the functions f1, f2,..., fn is identically zero? O The functions can be The general solution of (xy) (x dy + y dx) + e* dx + e dy = 0 is O None of these O xy² + e +e³ = C 1 (xy)² + e* + e³ = C O (xy)² + e +e³ = C
Which one is the correct expansion of O s³ L{F(t)} s² F(¹) (0) — sF(2) (0) - F(3) (0) - O None of the above ○ s³ L{F(t)} — s² F(¹) (0) — sF(²) (0) — F(³) (0) ○ s³ L{F(t)} s² F(0) — sF(¹) (0) — F(2) (0) L{F(³) (t)}