The general form of boundary value problems (BVP) can be expressed as follows: Bentuk umum bagi masalah nilai sempadan (
Posted: Tue Jul 05, 2022 9:57 am
solutions or no solution. Please use appropriate theorems to help you to complete the table below. Terdapat beberapa syarat yang harus dipenuhi sama ada MNS (1) diberi adalah linear/tidak linear dan mempunyai penyelesaian yang unik, banyak penyelesaian atau tidak ada penyelesaian. Sila gunakan teorem yang sesuai untuk membantu anda melengkapkan jadual di bawah. BVP MNS (a) 8y"-y' + y + x² = 0, 0<x<2, y(0) = 1, y(2) = 8 (b) y"=√y-yy', 0<x< 1, 3 y(0) = Z' y (1) (c)W" (x) - SW (x) = 2x² +In(x), 0<x<L, W(0) W() = 0, where S, D, q, le R and D# 0. = (1) Linear/Nonlinear Linear/Tak linear Unique/Many/No solutions Unik/Banyak/Tiada penyelesaian
The general form of boundary value problems (BVP) can be expressed as follows: Bentuk umum bagi masalah nilai sempadan (MNS) dapat dinyatakan seperti berikut: y" = f(x,y,y'), a ≤x≤ b, y(a) = a dan y(b) = B. There are some conditions that should be satisfied whether the given BVP (1) is linear/nonlinear and has a unique solution, many