Page 1 of 1

A1 TABLESPIERTANGG Normal Fastest 43588755 UNIVERS fxx B Normal Slowest 925 692 587 Normal Fastest WITH Normal Average 3

Posted: Tue Jul 05, 2022 5:53 am
by answerhappygod
A1 Tablespiertangg Normal Fastest 43588755 Univers Fxx B Normal Slowest 925 692 587 Normal Fastest With Normal Average 3 1
A1 Tablespiertangg Normal Fastest 43588755 Univers Fxx B Normal Slowest 925 692 587 Normal Fastest With Normal Average 3 1 (323.28 KiB) Viewed 12 times
A1 Tablespiertangg Normal Fastest 43588755 Univers Fxx B Normal Slowest 925 692 587 Normal Fastest With Normal Average 3 2
A1 Tablespiertangg Normal Fastest 43588755 Univers Fxx B Normal Slowest 925 692 587 Normal Fastest With Normal Average 3 2 (236.18 KiB) Viewed 12 times
Please help me on the first picture to obtain results on Excel or in Rstudio. The second picture is what needs to be done on the graph. Thank you.
A1 TABLESPIERTANGG Normal Fastest 43588755 UNIVERS fxx B Normal Slowest 925 692 587 Normal Fastest WITH Normal Average 3092 8526 Stroop Test Scores 2 - Sheet cs Accessibility: Unavailable Normal Sp 651 2075 40€ 962 850 1358 774 + ~ ៖ ដំ ៖ ទ ផ ទ ន ន ៖ ដី 172 terefere Fastest 602 1417 Interfere Slowest 2388 26016 20 10307 2452 1082 1662 17 Interfere Average Styles. Interfere SD Cells Interfere correct Average: 1488.876126 Count: 456 Sum: 661061 Interfere combined 田 W 1265 1447 1472 1472 1212 1318 1155 2318 1308 1126 1338 872 1913 1017 E Editing 896 3220 1055 1202 984 790 805 2132 1440 1651 1958 998 1002
#3. Import the dataset # Import Dataset button under environment tab # - Import from text (base) # - Pick a simple name for the file Stroop <- read.csv # - View File View(Stroop) ("~/Downloads/Stroop Test Scores 2 - Sheet1.csv") #You can use the paired samples t test website to help review # https://jvanster.github.io/Paired_samples_t-test.html #Pick what type of analysis you want to do. # Example compare Normal_Slowest to Interfere_Slowest # to see if there is a difference t.test(Stroop$Normal_Slowest, Stroop$Interfere_Slowest, paired = TRUE) # Create a Bar Graph # Since the data is paired data, you'll need to create # a dataset that includes a categorical variable to define # the groups "Normal" and "Interfere" Slowest_Data <- data.frame( Group = rep (c("Normal", "Interfere"), each = 25), #The number 50 corresponds to the total number in the dataset Time = c(Stroop$Normal_Slowest, #Time variable will be a combination of the normal Stroop$Interfere_Slowest) # and interfere paired groups time #Find your descriptives #Make sure tidyverse package is loaded library(tidyverse) #Create dataset with descriptive Data library (dplyr) Slowest Descriptives <- Slowest_Data %>% group_by (Group) %>% summarize(n = n(), mean = mean (Time), sd = sd (Time), se = sd / sqrt(n), ci = qt (0.975, df = n - 1) * sd / sqrt(n)) #Graph it! Basic with CIS Egplot (Slowest Descriptives, aes (x = Group, geom_bar (stat - "identity") y = mean)) + geom_errorbar (aes (ymin-mean-ci, ymax mean+ci)) hrine Meamins frasn