ator a and a component of V. Re ons: Vb₁ = a²V₁₁ Vc₁ = avai Vb2 = aVaz Vc2 = a²Vaz Vbo = Vo Vco = Vao eating Eq. (11.1)
-
- Site Admin
- Posts: 899603
- Joined: Mon Aug 02, 2021 8:13 am
ator a and a component of V. Re ons: Vb₁ = a²V₁₁ Vc₁ = avai Vb2 = aVaz Vc2 = a²Vaz Vbo = Vo Vco = Vao eating Eq. (11.1)
ator a and a component of V. Re ons: Vb₁ = a²V₁₁ Vc₁ = avai Vb2 = aVaz Vc2 = a²Vaz Vbo = Vo Vco = Vao eating Eq. (11.1) and substituting Eqs. (11.4) in Eqs. (11.2) and (11.3 V₁ = Vai + V2 + Vo V₁=a²V₁₁+aV2 + Vo V=aVa1 + a²V2 + Vo matrix form V₂ V [1 1 1 a² a a Val a²V2
or convenience we let en, as may be verified easily, A-1 V40 Val 11 Vaz a² a² a² a premultiplying both sides of Eq. (11.8) by A-1 yields 1 a² a a² SYMMETRICAL COMPONENTS 27 a² V₁₂ a Vao = (V₂ + V + Vc). Vai = Va2 = (Va+aV₂ + a²Vc) (V₂ + a²V₂ + aVc) (11.9 (11.10 h shows us how to resolve three unsymmetrical phasors into their symmetri omponents. These relations are so important that we shall write the separat tions in ordinary fashion. From Eq. (11.11) (11.11 (11.12 (11.13 (11.14 uired, the components Vbo, V1, V2, Vco, Ve1, and Ve2 can be found b 11.4). c2