Page 1 of 1

Let R4 have the Euclidean inner product. Use the Gram-Schmidt process to transform the basis {u₁, U₂, U3, U4, } into an

Posted: Thu Jun 30, 2022 9:33 pm
by answerhappygod
Let R4 Have The Euclidean Inner Product Use The Gram Schmidt Process To Transform The Basis U U U3 U4 Into An 1
Let R4 Have The Euclidean Inner Product Use The Gram Schmidt Process To Transform The Basis U U U3 U4 Into An 1 (60.07 KiB) Viewed 37 times
Let R4 have the Euclidean inner product. Use the Gram-Schmidt process to transform the basis {u₁, U₂, U3, U4, } into an orthonormal basis. u₁ = (0,2,1,0), u₂ = (1,1,0,0), u3 = (1,2,0, 1), u4 = (3,0,0,3) 9₁ = 93 = 42 ( √ √ √°) =(√² ² √² ³ √A). ,0 92 52 5 (√√√¹). 6'3 6' 5 2 =(√5/² ²3 √3/² ²/ √ √²/²¹) 5√6' 1 52 5 9₁ = • ( √ √ ) = ( √ - ² √² ²³ √A). 1 1 √6 ,0 92 5V 51 52 5 93 = (6 3 √ 6 3 √ 6¹). 2 1 52 5 9₁ = = ( 0 + + + 50 ) · • = ( √ ² - ³ √ ²³ ³² √²). -√√³₁²-√√3), 94 =(√₁5² VIS - 3 60). 93 = √¹) 94 = 51 52 5 52 =(√3/²/²/ √²/²/²/ √²/²¹) 6'56'51 94 = 1 51 52 52 5 9₁ = - ( √ √ √°). 4 =(√² ² ² √² ³² √²). ,0 65V 93 = 51 52 5 6'56'51 VIS' VIS) 94 =