z-score equation
MET 2301 NORMAL DISTRIBUTION PROBABILITY 1. What would be the probability if my calculated Z-score was -3.53? Circle the appropriate answer. 0.00 0.00022 000021 0.00020 0.00019 0.00028 0.0000 0.0001 0.00012 0.02 0.03 0,05 0.04 3.9 0.00005 0.0000 0.00004 0.00004 70,00004 000004 3.5 0.00007 0.00007 0.00007 0.00006 0.00000 3.7 000011 0.00010 0.00010 0.00010 0.00009 0.00009 3.6 0.00016 0.00015 0.00015 0.00014 0.00014 0.00013 -3.5 0.00023 0.00022 3.4 0.00034 0.00032 0.00031 0.00030 0.00029 33 0.0004 0.00047 0.00045 0.0004) 0.00042 3.2 0.0009 0.00000 0.00004 0.00062 0.00000 31 0.00097 0.00094 0.00090 0.00087 0.00004 3.0 0.00135 0.00131 0.00126 0.00022 0.00118 -2.9 0.00187 0.00181 000175 0.00169 000164 0.00256 -2.8 0.00241 0.00240 0.00113 0.00226 -2.7 0.00347 0.00336 0.00326 0.00317 0.00307 -2.6 0.00466 0.00453 0.00604 0 00621 0.008.20 0.01072 0.01390 0.01355 0.01321 0.01287 0.01255 0.01222 0.01756 0.01743 0.01700 0.01659 0.01618 0.01578 0.02275 0.02222 0.02169 0.02118 002068 002018 0.00114 000159 0.00219 0.00298 0.00440 0.00427 0.00415 0.00402 0.00187 0.00570 000554 0.00139 -2.5 24 0.00798 0.00755 0.00734 0.00714 0.00776 0.01044 0.01017 0.00990 0.00964 0.00939 Z -2.3 -2.2 -2.1 -2.0 100 a. 2. Explain the following notation: a. For P(x<12) 900000 P(Z<-1.5) 3. What is the Z-score? Explain in terms of having a Z-score of -.8 with a mean of 32.
4. The grades on the MET 2301 midterm at KSU are roughly symmetric with u=76 and a = 4.5. An inquisitive student wants to know the probability of scoring an 80. a. Calculate the Z-score for scoring 80. b. What is the probability of scoring 90 or higher? a. b. 5. Which normal distribution curve best suits the average steam pressure data? μ = 125 psi, a = 10 psi C. 125 135 145 155 165 175 185 A 95 105 115 125 135 145 155 s 50 95 110 125 140 155 170 Editing
Paragraph Styles 6. In your casting process it has been found that some parts had excessive porosity and have been failing in the field. You have been tasked to determine if the weight of each can determine the failure rate versus porosity. From a sampling of part weights, the mean has been determined to be 9.5 kgs., with the standard deviation being calculated to 1.1 kgs. Use the provided normal distribution curve to answer the following questions. Label and shade each area being defined: a. Percentage of castings that are < 8.4 kgs. b. Percentage of castings that are between 7.3 and 11.7 kgs. Percentage of castings that are > 12.8 kgs. c. Arreccihility Investinate F Editing Focus
Styles 52 Editing Voice 60
MET 2301 NORMAL DISTRIBUTION PROBABILITY 7. A sample of nightshift production has been placed in quality hold. The parts in question have been quarantined because of a low boss height measurement. It will be at least an hour before the quality team gets to the plant floor. You measure a sample of 100 parts out of the 1000 parts in quarantine. The upper control limit is 1.510 and the lower control is 1.490 with a nominal dimension of 1.500. a. If the 1000 parts are normally distributed about the mean, what is the probability that any of the parts are above the UCL and below the LCL if a = .0033? b. Out of the 100 parts sample what is the probability that the boss measures 1.511 or measures 1.489 if u = 1.502 and a = .0005
of the parts are above Styles Editing the UCL and below the LCL if o= .0033? b. Out of the 100 palts sample what is the probability that the boss measures 1.511 or measures 1.489 if u = 1.502 and a = .0005 Voice
Table entry, Find values on the left of the mean in this negative Z score table. Table entries for z represent the area under the bell curve to the left of z. Negative scores in the z-table correspond to the values which are less than the mean. .00 .01 .02 .08 0003 -3.4 .0003 .0003 .0003 -3.3 .0005 .0005 .0005 -3.2 0007 .0007 0006 -3.1 0010 .0009 .0009 -3.0 0013 0013 .0013 -2.9 .0019 G018 0018 -2.8 0026 .0025 0024 -2.7 .0035 .0034 .0033 .0032 -2.6 .0047 0045 0044 .03 .04 .05 .06 .07 .0003 .0003 0003 0003 .0003 .0004 0004 .0004 0004 .0004 .0004 .0006 .0006 0006 .0006 0005 .0005 .0009 .0008 .0008 .0008 .0008 0007 .0012 .0012 0011 .0011 0011 0010 0017 0016 0016 0015 0015 0014 0023 .0022 0021 0021 0020 0030 0029 .0028 0027 0023 0031 0041 .0043 0040 .0039 .0038 0037 0060 .0059 0057 0055 0054 0052 0051 .0049 -2.5 .0062 -2.4 .0082 .0080 .0078 .0075 .0073 0071 .0069 .0068 .0066 .0099 .0096 .0091 .0089 0087 0119 .0116 0113 -2.3 0107 0104 0102 0094 -2.2 .0139 .0136 .0132 0129 .0125 0122 -2.1 .0179 0174 0170 0166 0162 0158 0154 0150 0146 -2.0 .0228 .0222 0217 0212 .0207 0202 0197 0192 0188 -1.9 .0287 0281 0274 0268 0262 0256 .0250 .0244 .0239 -1.8 0359 .0351 .0344 .0336 0329 0322 .0314 -1.7 0446 .0436 0427 0418 0409 0401 0392 -1.6 .0548 .0537 0526 0516 0505 0485 -1.5 .0668 0655 .0643 .0630 0618 -1.4 0808 .0793 0778 .0764 .0749 0735 0721 .0307 0301 0495 0606 0594 .09 .0002 .0003 .0005 0007 0010 0014 .0019 .0026 0036 0048 .0064 .0084 0110 0143 0183 0233 0294 0384 0375 .0367 .0475 0465 0455 .0582 .0571 0559 .0708 .0694 0681 T'Ennit BE
.00 .01 .02 .03 .04 -3.4 .0003 .0003 .0003 .0003 .0003 -3.3 -3.2 0005 .0005 .0005 .0004 .0004 .0007 .0007 .0006 .0006 .0006 0010 0009 .0009 .0009 .0012 -3.1 -3.0 .0013 -2.9 .0019 -2.8 .0026 .0016 0022 .0021 0020 -2.7 .0035 0034 0033 -2.6 .0047 .0045 .0044 .0031 0030 .0028 0027 0013 .0013 .0018 .0018 .0017 .0025 .0024 .0023 .0032 .0043 -250062 .0060 .0059 .0057 -2.4 0082 .0080 .0078 .0075 -2.3 0107 .0104 0102 .0099 -2.2 0139 .0136 .0132 -2.1 0179 .0174 .0170 0039 0038 .0037 .0051 .0041 .0040 .0055 .0054 .0052 .0073 .0071 .0069 .0091 .0049 .0068 .0066 0096 .0094 .0089 0087 .0129 0125 .0119 .0116 0113 0166 .0162 .0122 .0158 .0202 .0197 .0154 .0150 .0146 .0192 .0188 -2.0 0228 .0222 .0217 0212 -1.9 0287 0281 .0274 0268 .0344 -1.8 0359 .0351 -1.7 .0446 0436 -1.6 0548 .0537 -1.5 0668 0655 -1.4 .0808 .0793 .0427 0526 .0643 0778 .0207 0262 .0256 .0250 .0244 0239 .0336 .0329 .0322 0314 .0307 .0301 .0418 .0409 .0401 .0392 .0384 0375 .0516 .0505 0495 0485 .0475 0465 .0630 .0618 .0606 0594 0582 0571 .0764 0749 0735 .0918 0901 .0885 0869 0853 .1075 .1056 .1038 1020 0721 .0708 .0694 .1093 -1.3 0968 .0951 0934 -1.2 1151 .1131 1112 -1.1 1357 1335 1314 -1.0 .1587 .1562 1539 .1515 1292 .1271 1230 1210 1190 1251 .1469 1492 1446 .1423 .1401 1685 1660 1635 1922 .1894 2177 -0.9 .1841 .1814 1788 1762 .1736 1711 -0.8 .2119 .2090 2061 .2005 .1977 -0.7 .2420 .2389 2358 .2296 -0.6 2743 .2709 2676 2611 .2578 .3050 -0.5 .3015 .3085 -0.4 .3446 .3409 .3372 2912 .3300 .3264 -0.3 3632 3745 .4129 .4013 .4404 .4801 .3821 -0.2 4207 -0.1 .4602 4562 -0.0 .5000 .4960 .3783 .4168 .0008 .0008 0.0012 0011 .0016 .0023 2033 2327 .2643 .2981 2946 .3336 .05 .06 .0003 .0003 .0004 .0004 .0006 .3707 3669 .4090 .4052 4522 4483 4443 4920 4880 4840 .0006 .0005 0008 .0008 0007 .0011 .0011 0010 .0015 .0015 ,0014 .0021 .0029 .07 .08 .09 .0003 0003 .0002 .0004 .0004 .0003 0005 .0005 0007 .1949 .2266 2236 .2206 .2546 2877 .3228 3594 .3974 4364 4761 .2514 .2843 2483 2810 .3156 3520 3897 .4286 4721 4681 .3192 3557 .0838 1003 .3936 4325 0010 .0014 .0019 0026 0036 .0048 .0064 .0084 .0110 0143 0183 0233 0294 0367 .0455 .0559 .0681 0823 .0985 1170 1379 .1611 1867 2148 2451 2776 3121 3483 3859 4247 4641
Z-score is a numerical measurement that describes a value's relationship to the mean of a group of values. Z-score is measured in terms of standard deviations from the mean. If a Z- score is 0, it indicates that the data point's score is identical to the mean score A Heights: 60 62 64 66 68 70 72 67 A-66 in. σ= 2 in. Probability = 67 in. -30-20-10 # +10 +20 +30 Standardized 2 Z-score x-μ σ 2 = 1 67-66/-0.5 -3 0 +1 +2 +3 3210 +1 +2 +3 0.5 * KENNESAW STATE UNIVERSITY
z-score equation
-
- Site Admin
- Posts: 899603
- Joined: Mon Aug 02, 2021 8:13 am