Page 1 of 1

Let be the vector space P2 = {ax2 +bx+c : a, b, c ∈ R} in which the inner product (p(x) | q(x)) = P1 n=−1 p(n)q(n)

Posted: Thu Jun 30, 2022 7:35 pm
by answerhappygod
Let be the vector space P2 = {ax2 +bx+c : a, b, c ∈ R} in which the inner product (p(x) | q(x)) = P1 n=−1 p(n)q(n) and let w = {ax2 +c : a, c ∈ R} a subspace of P2. Obtain the orthogonal complement of w.
Let Be The Vector Space P2 Ax2 Bx C A B C R In Which The Inner Product P X Q X P1 N 1 P N Q N 1
Let Be The Vector Space P2 Ax2 Bx C A B C R In Which The Inner Product P X Q X P1 N 1 P N Q N 1 (67.57 KiB) Viewed 47 times
5. Sea el espacio vectorial P₂ = {ax²+bx+c: a, b, c = R} en el cual se define el producto interno (p(x) | q(x)) = Σ₂=-1₁p(n)q(n) y sea w = {ax² +c:a, ce R} un subespacio de P2. Obtenga el complemento ortogonal de w.