Simulation website: https://www.thephysicsaviary.com/Physics/Programs/Labs/AtwoodLab/ Part A: Constant Total Mass 1. Go
Posted: Wed Jun 08, 2022 1:33 pm
https://www.thephysicsaviary.com/Physic ... AtwoodLab/ Part A: Constant Total Mass 1. Go to the simulation website, then click Begin. 2. Set M1130 g and M2=120 g. Select default Earth. 3. Click Start to release the weights to move. 4. The weights' position and velocity as function of time graphs are displayed. 5. Estimate the acceleration from the graphs. This is aexp, experimental value of the weights' acceleration. Record M1, M2, and aexp in Data Table A. Record all data in SI Units. 6. Increase M1 by 10 g and decrease M2 by 10 g so that M1+M2 remains constant. 7. Run the simulation and record the data. 8. Repeat steps 3-7, each time increase M1 by 10 g and decrease M2 by 10, until Run#A8. Part B: Constant Net Force 1. Set M1 130 g and M2-80 g. 2. Perform the simulation and record the data the same as in Part A. Record data in Data Ta- ble B. 3. Increase both M1 and M2 by 10 g to keep the net force constant for each run until Run#B8.
Calculations Calculate for each run the following and record in the data tables. 1. The net force, using Fnet = (M₁-M₂) 8 2. Total mass, M1+M2 3. The theoretical acceleration, using Fnet a theory = M₁ + M₂ 4. The percent error between the experimental acceleration and the theoretical acceleration. (See the document in the Lab Instruction module on Canvas.) 44700
Data Table A: Constant Total Mass Run# M M A1 1 (kg) 0.130 A2 -0.140 A3 0.150 A4 0.160- A5 0.170 A6 0.180 A7 0.190 A8 0.200 Data Table B: Constant Net Force Run# M M B1 B2 B3 B4 B5 B6 B7 B8 2 1 (kg) 0.130 0.140 0.150 0.160 0.170 0.180 0.190 0.200 2 (kg) 0.120 0.110 0.100 0.090 0.080 0.070 0.060 0.050 2 (kg) 0.080 0.090 0.100 0.120 0.130 0.140 0.150 0.160 exp 2 (m/s) 0.378m/s² 1.166m/s² aexp 2 (m/s) F net (N) 0.098 N 0.294 N 0.49 N 0.686 N 0.882 N 1.078 N 1.274 N 1.47 N F net (N) 0.49 N 0.49 N 0.49 N 0.49 N 0.49 N 0.49 N 0.49 N 0.49 N M+M 1 theory (kg) 2 (m/s) 0.25kg 0.392m/s² 0.25kg 1.176m/s² 0.25kg 1.96m/s² 0.25kg 2.744m/s² 0.25kg 3.528m/s² 0.25kg 4.312m/s² 0.25kg 5.096m/s² 0.25kg 5.88m/s² a M+M 1 2 theory (kg) 2 (m/s) 0.21kg 2.3m/s² 0.23kg 2.130m/s² 0.25kg 1.96m/s² 0.28kg 1.75m/s² 0.3kg 1.63m/s² 0.32kg 1.531m/s² 0.34kg 1.441m/s² 0.36kg 1.361m/s² 2 a Percent error 3.57% 0.85% Percent error
Questions Use Data Table A for Questions # 1-3, and Data Table B for Question # 4-6. 1. For the Constant Total Mass data, plot a graph of Fnet VS. aexp (Table A). Find the best-fit line equation. Attach the plot, with the best-fit line equation, to the lab report. 2. What does the slope of the best-fit line represent? 3. How does the Force vs. Acceleration plot relate to Newton's Second Law? The Force vs. Acceleration plot relates to Newton's Second Law because the plot gives us the mass, this is the constant total mass. 4. Plot the ap VS (M) + M₂) graph for Data Table B. Fit the data to an inverse function, y = A/ x. Attach the graph with best-fit equation to the report. 5. Find parameter A and explain what A represents. 6. How does the aexp VS (M+ M₂) plot relate to Newton's Second Law.
Simulation website: Calculations Calculate for each run the following and record in the data tables. 1. The net force, using Fnet = (M₁-M₂) 8 2. Total mass, M1+M2 3. The theoretical acceleration, using Fnet a theory = M₁ + M₂ 4. The percent error between the experimental acceleration and the theoretical acceleration. (See the document in the Lab Instruction module on Canvas.) 44700
Data Table A: Constant Total Mass Run# M M A1 1 (kg) 0.130 A2 -0.140 A3 0.150 A4 0.160- A5 0.170 A6 0.180 A7 0.190 A8 0.200 Data Table B: Constant Net Force Run# M M B1 B2 B3 B4 B5 B6 B7 B8 2 1 (kg) 0.130 0.140 0.150 0.160 0.170 0.180 0.190 0.200 2 (kg) 0.120 0.110 0.100 0.090 0.080 0.070 0.060 0.050 2 (kg) 0.080 0.090 0.100 0.120 0.130 0.140 0.150 0.160 exp 2 (m/s) 0.378m/s² 1.166m/s² aexp 2 (m/s) F net (N) 0.098 N 0.294 N 0.49 N 0.686 N 0.882 N 1.078 N 1.274 N 1.47 N F net (N) 0.49 N 0.49 N 0.49 N 0.49 N 0.49 N 0.49 N 0.49 N 0.49 N M+M 1 theory (kg) 2 (m/s) 0.25kg 0.392m/s² 0.25kg 1.176m/s² 0.25kg 1.96m/s² 0.25kg 2.744m/s² 0.25kg 3.528m/s² 0.25kg 4.312m/s² 0.25kg 5.096m/s² 0.25kg 5.88m/s² a M+M 1 2 theory (kg) 2 (m/s) 0.21kg 2.3m/s² 0.23kg 2.130m/s² 0.25kg 1.96m/s² 0.28kg 1.75m/s² 0.3kg 1.63m/s² 0.32kg 1.531m/s² 0.34kg 1.441m/s² 0.36kg 1.361m/s² 2 a Percent error 3.57% 0.85% Percent error
Questions Use Data Table A for Questions # 1-3, and Data Table B for Question # 4-6. 1. For the Constant Total Mass data, plot a graph of Fnet VS. aexp (Table A). Find the best-fit line equation. Attach the plot, with the best-fit line equation, to the lab report. 2. What does the slope of the best-fit line represent? 3. How does the Force vs. Acceleration plot relate to Newton's Second Law? The Force vs. Acceleration plot relates to Newton's Second Law because the plot gives us the mass, this is the constant total mass. 4. Plot the ap VS (M) + M₂) graph for Data Table B. Fit the data to an inverse function, y = A/ x. Attach the graph with best-fit equation to the report. 5. Find parameter A and explain what A represents. 6. How does the aexp VS (M+ M₂) plot relate to Newton's Second Law.