Page 1 of 1

clear all; close all; t=0:10^(-2):5*pi; alpha=2;beta=0.2;K1=1;K2=5;% Choose alpha,beta, K1, K2 values arbitrarily k=alph

Posted: Tue Jun 07, 2022 10:25 am
by answerhappygod
Clear All Close All T 0 10 2 5 Pi Alpha 2 Beta 0 2 K1 1 K2 5 Choose Alpha Beta K1 K2 Values Arbitrarily K Alph 1
Clear All Close All T 0 10 2 5 Pi Alpha 2 Beta 0 2 K1 1 K2 5 Choose Alpha Beta K1 K2 Values Arbitrarily K Alph 1 (68.32 KiB) Viewed 21 times
clear all; close all; t=0:10^(-2):5*pi; alpha=2;beta=0.2;K1=1;K2=5;% Choose alpha,beta, K1, K2 values arbitrarily k=alpha*K1+beta*K2 y=k.*(1-exp(-t./pi)); % y(t) plot(t,y); xlabel ('t'); ylabel ('y(t)'); title(' y(t) vs t') Result: k = ^ 3 25 15- 05 y(t) vst do. 10 da 14 16

[0.1 1]); [0.5 1]); g1-tf([-5*10e6], g2-tf([-5*10e6], g3= ([-5*10e6], [1 1]); g3-tf([-5*10e6], [1 1]); step(g1,g2,83)

7) Assuming a unity negative feedback loop, derive the following transfer functions a. Gry(s) b. Gdy(s) c. Gre(s) d. Gde(s)

Matlab code: Clear all; Close all; t=0:10^-2||5*pi alpha=2;heta=0.2;K1=1;K2-5;% Choose alpha,heta, K1,K2 values arbitrarily kmalpha K1+brta K2 y=k.*(1-exp(-t./pi)); y(t) plot(t, x); slabel(t); vabellvit)'); title('y(t) vs t') Result: k=3 25 15- y() ID 32 14 16 -*100], [0.11) 2-5106) [051] 3-5*1006), [11]: 3-5*106], [11]: stepig1.g2.83) 7) Assuming a unity negative feedback loop, derive the following transfer functions a. Gry(s) b. Gdy (S) c. Gre(s) d. Gde (S)