The function f(x, y) = x³ − 3x² y + 3xy²-y³ +24 x² -8 y² - 108 x + 12 y + 80 has a critical point on the x-axis. (a) (i)
Posted: Tue Jun 07, 2022 5:50 am
The function f(x, y) = x³ − 3x² y + 3xy²-y³ +24 x² -8 y² - 108 x + 12 y + 80 has a critical point on the x-axis. (a) (i) Enter fx (x,0) = (ii) Enter fy (x,0) = (b) Enter the x-coordinate of the critical point, where both these derivatives are zero. 1 (c) Enter the matrix fxx fxy [fyx fyy] at that point. To enter the matrix click on the 3 x 3 grid of squares below and replace the entries with your answer. ə ab sin (a) f ∞ a Ω Əx E