(a) Prove that if L ∈ NPC∩BPP(α, β+ 1/2n ), then NP ⊆ S c>0 BPP(α, β+ 1/ ).
Posted: Mon Jun 06, 2022 1:10 pm
(a) Prove that if L ∈ NPC∩BPP(α, β+ 1/2n ), then NP ⊆
S c>0 BPP(α, β+ 1/ ).
2. (a) Prove that if L = NPC¬BPP(a, ß+), then NP C U BPP(a, ß+2c). c>0 (b) Prove that NP CU>0 BPP (1/2, 1/3 + 27c).
S c>0 BPP(α, β+ 1/ ).
2. (a) Prove that if L = NPC¬BPP(a, ß+), then NP C U BPP(a, ß+2c). c>0 (b) Prove that NP CU>0 BPP (1/2, 1/3 + 27c).