1. This question concerns the following elementary liquid-phase reaction: 2A → B (a) The reaction is to be carried out i
Posted: Sat May 21, 2022 3:34 pm
question concerns the following elementary liquid-phase reaction: 2A → B (a) The reaction is to be carried out in a reactor network of two identical isothermal CSTRs positioned in series. The feed is pure A and the conversion at the outlet of the second reactor must be 0.95. (i) Determine the conversion at the outlet of the first reactor. [9 marks]
Data: FAO = 4 mol min-1 -3 Cao = 0.5 mol dm k = 4.5 [mol dm-31*'min-1 -1
R = 8.3145J/mol K = 1.98 cal/mol K The formulae below are for the following reaction where A is the limiting reactant: aA + bB → CC + dD Excess Ratio: NBo a y = b Nao Kinetics: -Eact/RT (-ra) = KC AC3 k=Ae Conversion: Constant Volume Systems: C; = Cio + VCAOX CA = CAO(1 - x) Variable Volume Systems: E = y208 6-689- )- C d b -+---- ка a a а. = Vi i=1 Cio + viCAOX C = (1 + EX) (1 – X) CA = CAO (1 + EX) Design Equations: 影。 -X NAO Batch Reactor: t= dx JO (-A) V CSTR: V= FAOX (-ra) > T = Vo FAO PFR: V= so dx (مr-)
Numerical Integration: Χη Xnxo Trapezium Rule: ydx = Elyo +2(y, + y2 + y2 + ... + Yo-1) +yn]; n = [h n- n Хо -X2 h Simpson's Rule: = + ; h = X2 - Xo 2 Хо **tx = $ \x + 4%, + ve]n=**** ydx [48 (»-Mlvo , n-* L*ydx = '5lvo + 4y, + 2y2 + 4x +ya] n = *s ** n-- -X3 ydx = 3 8 h[y. + 3y, + 3y2 +y3]; h X3 – XO 3 Хо [4y2 ; h = X4 4
1. This Data: FAO = 4 mol min-1 -3 Cao = 0.5 mol dm k = 4.5 [mol dm-31*'min-1 -1
R = 8.3145J/mol K = 1.98 cal/mol K The formulae below are for the following reaction where A is the limiting reactant: aA + bB → CC + dD Excess Ratio: NBo a y = b Nao Kinetics: -Eact/RT (-ra) = KC AC3 k=Ae Conversion: Constant Volume Systems: C; = Cio + VCAOX CA = CAO(1 - x) Variable Volume Systems: E = y208 6-689- )- C d b -+---- ка a a а. = Vi i=1 Cio + viCAOX C = (1 + EX) (1 – X) CA = CAO (1 + EX) Design Equations: 影。 -X NAO Batch Reactor: t= dx JO (-A) V CSTR: V= FAOX (-ra) > T = Vo FAO PFR: V= so dx (مr-)
Numerical Integration: Χη Xnxo Trapezium Rule: ydx = Elyo +2(y, + y2 + y2 + ... + Yo-1) +yn]; n = [h n- n Хо -X2 h Simpson's Rule: = + ; h = X2 - Xo 2 Хо **tx = $ \x + 4%, + ve]n=**** ydx [48 (»-Mlvo , n-* L*ydx = '5lvo + 4y, + 2y2 + 4x +ya] n = *s ** n-- -X3 ydx = 3 8 h[y. + 3y, + 3y2 +y3]; h X3 – XO 3 Хо [4y2 ; h = X4 4